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Overview

• SWOT River products generally meet their targeted performance expectations
– Even at node-level wse is excellent (although there are anomalies)
– Reach-level slopes are generally good
– Node and reach widths behave most differently from prelaunch expectations

• SWOT ADT has recently been focusing on river widths in an effort to
– Better characterize performance
– Identify the sources of width errors
– Develop approaches to mitigate remaining issues

• Presentation outline
– Statistical performance behavior, including as a function of various parameters
– Examples of known error mechanisms
– Algorithm improvements beyond Version D
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Kinds of Width Assessments

• Have done several classes of assessments (with different levels of scrutiny)
– Manual investigation of cases as well as statistical assessments
– “Fine” validation with co-incident high-resolution masks

• Shoreline walks, NV5…
– Coarse validation (wrt pekel 50%ile threshold)
– GLOW-S width collocations 
– DSWx comparisons
– Multitemporal assessments

• Self consistency over time and with consistency with expected assumptions (e.g., width 
and wse should increase together)

• Performance split by pass-observation etc
• ADT Has focused much of the width assessment effort on DSWx comparisons

– Can get global representative set
• Critical because there are several different mechanisms for width errors

– Large enough set for robust statistics and reliable conclusions
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DSWx Width Comparisons

• DSWx collocations with SWOT
– DSWx-HLS WTR v1.0, from S2
– SWOT offline Version D-like processing science 

orbit (node and reach)
• ~ 300 SWOT tiles globally(**) in the science orbit

– ~30 m resolution masks 
– “Truth” river processing similar to RiverTile 

processing except
• Different handling of connectivity
• Treating clouds as dark_water and filtering on 

dark_frac (to exclude them from assessments)
– Collocations <12 hours in time between SWOT and 

DSWx

• (**)~300 tiles is about the minimum needed to get 
robust statistics (tested for larger collection of data 
over Version C dataset)
– Have identified a separate ~300 tiles to use as 

future validation of updated algorithms adapted 
and tuned from the first ~300 tiles

Reaches with SWOT and DSWx 
matches in the ~300 tile 
dataset (before any filtering)
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Quality Filtering for DSWx Width Assessments

• Apply the filter we have been using for both WSE and Width (OIIT)
• DSWx also has quality filtering

– Exclude clouds in DSWx
– Exclude DSWx tile clipping

Inner Filter (OIIT)
Product Variable Filtering Criteria

dark_frac (dark water fraction) <= 0.4 (40%)

obs_frac_n (fraction of nodes with valid WSE) >= 0.5 (50%)

node_q (summary node quality indicator) Good, Suspect and Degraded

reach_q (summary reach quality indicator) Good, Suspect and Degraded

node_q_b (bitwise node quality indicator) <= 2097152

reach_q_b (bitwise reach quality indicator) <= 2097152

xovr_cal_q (crossover calibration quality indicator) <= 1

area_total (total water surface area) >= 0

Outer Filter (OI)
Product Variable Filtering Criteria

xtrk_dist (cross-track distance) 10 – 60 km

p_width (prior width from SWORD) >= 80m

p_length (prior reach length from 
SWORD)

>= 7km

ice_clim_f (climatological ice flag) Likely not ice covered
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DSWx Statistical Comparisons

• Bulk results
– Many errors seem to occur near river banks, so 

focus on width error metric (in meters)
– Width errors (focus on OIIT)

• low bias (<5m for nodes, <15m for reach)
• ~50m 1-σ errors

– Not clear how much error is SWOT vs DSWx 
contributions

• Limitations with this approach:
– ~30m resolution limitations on edges and small 

water bodies
– Truth processing behaves in many ways like the 

SWOT processing, potentially hiding some classes 
of algorithm error

– Almost every observation is for a different 
node/reach (not many observations of the same 
reach over time)
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Width Error vs Width

• Width errors are not a strong 
function of the width
– Bias (50%ile, red line) is flat
– 1-𝜎𝜎 error (dashed-black line) 

does have a trend

• Width error in meters is a 
better metric than fractional 
error to quantify width error
– More relatable to physical 

mechanisms of width error
– Fractional errors are 

dominated by the smaller 
rivers because they are so 
much more abundant

Width errors unbiased vs width, 
but 1-𝜎𝜎 error increases for larger 

widths

(m)
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Cross-track Bias in Width Error

• There is a width error bias vs cross-track (in both nodes and reaches)
– Positive bias in the near swath (~+50 m at 10 km)
– Negative bias in the far swath (~-10 m, at 60 km)

(m)(m)

Nodes Reaches
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Width Error Relationships

• Width errors (both the bias and the 1-𝜎𝜎 error) are a function of various 
parameters that exist in the river products

• Many of these are coupled with each other making it difficult to identify 
mechanisms of error
– E.g., sig0 bias trend may be due to dependence with cross-track and/or with 

dark_frac

Width errors get increasingly 
biased (low) with higher dark_frac

Width bias larger for lower 
cross-track and higher sig0Brighter water has larger width bias

(m)
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Per-pass Bias: Multitemporal Analysis

• We are actively working on:
– Understanding the mechanisms that cause the cross-

track/per-pass bias 
– Developing algorithms for correcting/mitigating those 

mechanisms
– Empirical bias correction is also being considered

• Time series shows bias that depends 
on pass number in cycle (PxC0 data)

• Seems related to the cross-track bias
• Will still be in the Version D data
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Finding Error Mechanisms

• Cross-track bias and other statistical trends
– help understand the characteristics of the errors in the data
– but do not directly point to specific error mechanisms
– nor indicate which mechanisms are most important to fix

• Potential approaches to identify error mechanisms
– Look through cases manually (maybe filtering on specific error magnitude 

ranges)
• We have done some amount of this and have a list of known issues

– Hypothesize mechanisms that are causing the biggest problem, figure out how to 
flag or fix them, then test how they impact the overall error statistics

• i.e., given an error mechanism and a way of identifying it in the data, we can directly 
test sensitivity of the errors to that mechanism
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Known Classes of Width Error

• Water detection and dark water flagging errors
– False detection of bright non-water (cities, ice/snow etc)
– Errors in the prior occurrence
– Errors in projecting and co-registering the prior mask with the slant-plane images
– Errors in selecting the occurrence threshold
– These occur in PIXC processing

• Misassignment of non-river-water pixels to nodes
– Assigning extra non-river pixels

• Neighboring lakes
• False detected cities, bright fields, or sand bars
• Other bright non-river features coupled with SWORD extreme distance too large

– Not assigning river pixels
• SWORD centerline offsets
• SWORD extreme distance clipping

– These occur in river processing (pixel-to-node)

• Anomalies affecting node-to-reach aggregation
– Node-level width outlier rejection is difficult on a per-pass basis
– Quality flags and uncertainty measures for width/area are still rudimentary
– These occur in river processing (node-to-reach aggregation)
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Example: Extra Pixel Assignment Errors

• Detection of non-river-water that gets assigned 
to the river
– Multiple causes of this “overdetection” 

effect(e.g., lakes close to river, flooded fields, 
cities that are bright and detected as water etc)

• White: DSWx water in reach
• Gray: DSWx water not in reach
• Black: DSWx non-water
• Blue: SWOT detected water
• Orange: SWOT dark water
• Purple: SWOT water-near-land
• Yellow: SWOT land-near-water
• Green: SWOT land
• Red: SWOT low coherence water
• Pink: SWORD centerline

SWOT Slant-plane 
classification image
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Example: Missed Pixel Assignment Errors

• Missed assignment causing gaps in SWOT data
– Possibly multiple mechanisms that can cause this 

“slicing” effect
• E.g., Specular ringing, phase unwrapping region on 

wrong ambiguity, SWORD  clipping in multibranch 
sections

• White: DSWx water in reach
• Gray: DSWx water not in reach
• Black: DSWx non-water
• Blue: SWOT detected water
• Orange: SWOT dark water
• Purple: SWOT water-near-land
• Yellow: SWOT land-near-water
• Green: SWOT land
• Red: SWOT low coherence water
• Pink: SWORD centerline

SWOT Slant-plane 
classification image
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Example: SWORD clipping

• SWOT pixels outside of 
SWORD extreme distance 
get clipped out and not 
assigned
– Can be obvious like this 

case or more subtle (small 
differences near riverbanks)

• White: DSWx water in reach
• Gray: DSWx water not in reach
• Black: DSWx non-water
• Blue: SWOT detected water
• Orange: SWOT dark water
• Purple: SWOT water-near-land
• Yellow: SWOT land-near-water
• Green: SWOT land
• Red: SWOT low coherence water
• Pink: SWORD centerline

SWOT Slant-plane 
classification image

In this example DSWx has a larger extreme distance than SWOT  
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Exploring Additional Algorithms

• Have explored width outlier filtering
– Difficult even with entire multitemporal stack

• Developing node-level and reach-level quantities that 
can indicate when nodes/reaches are less reliable
– Can use in node-to-reach aggregation to 

deweight/exclude nodes with bad dubious widths (see 
other slides for details?)

– Can use as information for additional quality filtering
• Some experimental metrics (not available in Version D) 

that seem to be useful
– locoh_frac: fraction of pixels in a node that have low-

coherence classification
– clip_frac: fraction of pixels in a node that were excluded 

because they are farther than the “extreme distance” 
threshold

– Orange lines (non-zero locoh_frac and clip_frac) are 
significantly skewed right meaning they capture a larger 
percentage of the large positive width errors

Blue: locoh_frac=0
Orange: locoh_frac>0

Blue: clip_frac=0
Orange: clip_frac>0



SWOT

17©  2025 California Institute of Technology.  Government sponsorship acknowledged.

Exploring Additional Algorithms

Treating low-coh pixels (and a small 
buffer around them) as degraded in 

pixel-to-node aggregation
Version D-like processing

• Treating low-coherence pixels as degraded
– Reduces the cross-track dependence
– Could reduce the number of nodes that pass 

OIIT fIlter

• Does not completely resolve the 
cross-track bias

• There are likely multiple mechanisms 
that contribute to the cross-track bias

(m) (m)
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Multitemporal Info as Priors

• Already have Bayes reconstruction for WSE in RiverSP
– Currently only applies to WSE and uses a linear fit as the prior WSE profile and 

coarse guesses for spatial correlation scales
• Extend to use priors from multitemporal stack of SWOT data

• Reference WSE and width along-river profiles to get actual non-linear profile 
shape

• Height/width relationship models
• Spatial-scale/correlation length estimates
• Seasonally varying priors

• Available in this repo https://github.com/SWOTAlgorithms/river-spatial-scale

Can help in outlier 
rejection as well as 
produce quality estimates 
at every node (with 
reliable uncertainties)

dist_out (m)

https://github.com/SWOTAlgorithms/river-spatial-scale
https://github.com/SWOTAlgorithms/river-spatial-scale
https://github.com/SWOTAlgorithms/river-spatial-scale
https://github.com/SWOTAlgorithms/river-spatial-scale
https://github.com/SWOTAlgorithms/river-spatial-scale
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Summary

• SWOT river performance is good, but ADT is focusing on improving widths

• Width errors compared to DSWx
– Show relatively low overall bias and ~50m (1-σ) errors
– There is a bias vs cross-track (and is coupled with sig0 and dark_frac etc)
– The cross-track bias manifests as a per-pass bias in multitemporal width 

timeseries and height/width analyses

• ADT is working on
– Identifying sources of the width errors (especially the cross-track bias)
– Developing additional quality indicators
– Improving/fixing known issues algorithmically
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Backup
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DSWx Details

• Truth processing uses the “orig” aggregation method, which differs from 
what’s used in forward processing. Don’t know what the implications of that 
are, however.

• Cal/Val comparison also used LandSAT, but science-orbit does not.
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BayesData

• Bayes reconstruction can be done for both WSE and width (and joint/together)
• Can also incorporate height/width model (though not applied in this example)
• Width reference profiles are not too smooth, but deviations around them are
• Potentially different spatial scales of deviation from reference profiles for WSE and for 

width
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