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SWOT Discharge Estimation Framework
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SWOT Discharge Estimation Framework

CY D
SWOT ' & O o
T = - Q SWOT
© L4 Discharge
e
O 2
_SWORD 7)) T SWOT
Y a):
~ O
=3 =
< FLPs
__Sos O » Flow Laws
; = Cross- Q = MGMS(W,S,84,4,n)
N Section 0A =CS(H, W)
SWOT
CONFLUENCE* L2 Discharge

* Add a few more layers



SWOT Bathymetry Estimation Framework
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SWOT Bathymetry Estimation Framework
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; Outputs/Format :
o0 - Optimized nodes/reaches cross-section profils.

- Approximated Hypsometry curves.
- Cross-section variability with the reach.
- Other?



Different approaches already exist ...

We hope to get your feedback on the usefulness
of such product, and recommendations on
product format



THE OHIO STATE Estimating reach-scale bathymetry
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Durand, M., Dai, C., Moortgat, J., Yadav, B., Frasson, R. P. de M., Li, Z., et al. (2024).
Using river hypsometry to improve remote sensing of river discharge. Remote Sensing of
Environment, 315, 114455. https://doi.org/10.1016/j.rse.2024.114455



THE OHIO STATE Estimating reach-scale bathymetry
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Wade, J., Cerbelaud, A., David, C., Durand, M., Frasson, R., Durand, M., Dai, C., Moortgat, J., Yadav, B., Frasson, R. P. de M., Li, Z., et al. (2024).
Pavelsky, T., Oubanas, H. “Wide-Swath Altimetry Maps Bank Using river hypsometry to improve remote sensing of river discharge. Remote Sensing of
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Pre-launch studies (e.g. Yoon et al. 2016) confirmed that at
least at reach-scale, multiple values of resistance (Manning’s
n, Strickler’s K, etc) and submerged bathymetry yield are
equally like (a).

This does not affect discharge accuracy (b), and such a
bathymetry product may still be valuable.

Equifinality may have less impact on node-estimates of
bathymetry

Yoon, Y., Garambois, P., Paiva, R. C. D., Durand, M., Roux, H., & Beighley, E. (2016). Improved
error estimates of a discharge algorithm for remotely sensed river measurements: Test cases on
Sacramento and Garonne Rivers. Water Resources Research, 52(1), 278 294.
https://doi.org/10.1002/2015wr017319

Caveat: Equifinality at reach-scale
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INRAS SICFLOW

“Sic Inverse problem Capabilities for river ELOW dynamics”
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Estimating node-scale bathymetry
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Estimation Approach :

Observed Bathymetry : Double sweep for
smoothed parametric curve w(h) enforcing
continuous increase condition.

Submerged Bathymetry : SIC4DVAR
Discharge Estimation (combined estimation
of bed level and friction).

Output Format :

Node Level Product

Observed Bathymetry : Cross-section
approximation with pairs of (h;,w;) with
optimized number of poinfs.

Submerged Bathymetry : Bed-level and
min-width for simplified rectangular shape.
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“Sic Inverse problem Capabilities for river ELOW dynamics”

Bathymetry: case br4ri3sr2160260125
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Estimating node-scale bathymetry



INRAZ

Estimation Approach :

Observed Bathymetry : Double sweep for
smoothed parametric curve w(h) enforcing
continuous increase condition.

Submerged Bathymetry : SIC4DVAR
Discharge Estimation (combined estimation
of bed level and friction).

Output Format :

Node Level Product

Observed Bathymetry : Cross-section
approximation with pairs of (h;,w;) with
optimized number of poinfs.

Submerged Bathymetry : Bed-level and
min-width for simplified rectangular shape.

Availability :
Outputs already available globally in L4 SoS
(SICADVAR’s outputs)

Validation : Validation has been performed
through discharge. Validation using Lidar/Optical
data is On-going.
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Estimating node-scale bathymetry
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A 1. River Network

4. Extract SWOT river SP node heights to network and filter outliers

@® SWOT node height retained

‘*3‘1& E ' s | ® SWOT node height removed
A8 |t SO

Inversion of 1D Gradually Varied Flow
equations to solve for bed given a set of
SWOT overpasses

2. Discharge
data

(e.g. gauges)

3. Approximate
steady state discharge
for each SWOT
overpass
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A 1. River Network 4. Extract SWOT river SP node heights to network and filter outliers
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Inversion of 1D Gradually Varied Flow
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i5. Find bed that best simulates SWOT heights
o ® SWOT node height
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1. Non-linear optimiser (Neal et al., B
in review)
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Elevation (w.r.t EGM2008)
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Co-solve for discharge and bathymetry:

Under GVF, and given a Q and channel, height is exactly
specify. Solve for Q and channel geometry to match SWOT
observations
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Given these filtered and
smoothed water surfaces ST ITTTIEL L L
from SWOT, solve for a
Q and parameter set
(from the triplets) that
best reconstructs the
water surface under GVF
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Perspectives/Objectives
SWOT Bathymetry offline WG to standardize algorithms outputs and
define relevant variables.
Bathymetry benchmark for inter-comparison (Gather Bathymetry data).
Define a Validation framework for 1D-simplified product.

Framework for global production (Confluence already has some of the
algorithms).






