

SWOT HR

LAKE STORAGE

CHANGE STATUS

Mathilde de Fleury (CS Group), Claire Pottier (CNES), Roger Fjørtoft (CNES) and Manon Delhoume (CS Group) on behalf of the HR Algorithm Development and Cal/Val Team

2025 SWOT SCIENCE TEAM MEETING
15 OCTOBER 2025

INTRODUCTION

STORAGE CHANGE

Storage change availability – Version C vs Version D

- PGC0, PIC0 and PIC2: 25 lakes with storage change variables
- PGD0, PID0: 5,370,449 lakes with storage change variables
- Major update: 91% of PLD lakes with storage change variables (total = 5,897,941 lakes)

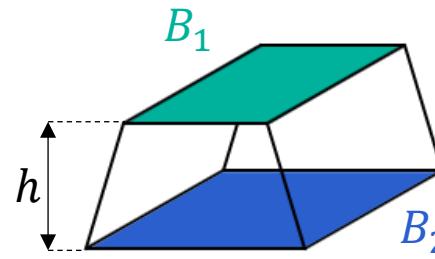
STORAGE CHANGE ALGORITHMS

STORAGE CHANGE

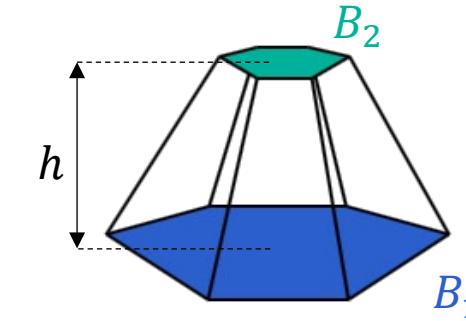
From SWOT Algorithm Theoretical Basis Document: L2_HR_LakeSP

The storage change variables in the LakeSP_Prior file:

- **ds1_l**: **linear** model with **direct** approach: volume of a trapezoidal prism
- **ds1_q**: **quadratic** model with **direct** approach: volume of truncated pyramid


STORAGE CHANGE ALGORITHMS

STORAGE CHANGE


From SWOT Algorithm Theoretical Basis Document: L2_HR_LakeSP

The storage change variables in the LakeSP_Prior file:

- ds1_l: linear model with direct approach: volume of a trapezoidal prism
- ds1_q: quadratic model with direct approach: volume of truncated pyramid

$$V = \frac{h}{2}(B_1 + B_2)$$

$$V = \frac{h}{3}(B_1 + B_2 + \sqrt{B_1 * B_2})$$

STORAGE CHANGE ALGORITHMS

STORAGE CHANGE

From SWOT Algorithm Theoretical Basis Document: L2_HR_LakeSP

The storage change variables in the LakeSP_Prior file:

- ds1_l: linear model with direct approach: volume of a trapezoidal prism
- ds1_q: quadratic model with direct approach: volume of truncated pyramid

Volume change in km^3 between the **current SWOT observation t_i** and the **first valid observation by SWOT at time t_0** . Ground segment constrains the use of only the current observation, not the previous one, even for reprocessing.

STORAGE CHANGE ALGORITHMS

STORAGE CHANGE

From SWOT Algorithm Theoretical Basis Document: L2_HR_LakeSP

The storage change variables in the LakeSP_Prior file:

- ds1_l: linear model with direct approach: volume of a trapezoidal prism
- ds1_q: quadratic model with direct approach: volume of truncated pyramid

$$\Delta V_l(t_i) = \frac{wse_{t_i} - ref_wse}{2} (area_total_{t_i} + ref_area)$$

current SWOT observation t_i values

Reference values in the PLD

STORAGE CHANGE ALGORITHMS

STORAGE CHANGE

From SWOT Algorithm Theoretical Basis Document: L2_HR_LakeSP

The storage change variables in the LakeSP_Prior file:

- ds1_l: linear model with direct approach: volume of a trapezoidal prism
- ds1_q: quadratic model with direct approach: volume of truncated pyramid

$$\Delta V_q(t_i) = \frac{wse_{t_i} - ref_wse}{3} \left(area_total_{t_i} + ref_area + \sqrt{area_total_{t_i} * ref_area} \right)$$

current SWOT observation t_i values

Reference values in the PLD

STORAGE CHANGE ALGORITHMS

STORAGE CHANGE

From SWOT Algorithm Theoretical Basis Document: L2_HR_LakeSP

The storage change variables in the LakeSP_Prior file:

- ds1_l: linear model with direct approach: volume of a trapezoidal prism
- ds1_q: quadratic model with direct approach: volume of truncated pyramid

Volume change in km³ between the **current SWOT observation t_i** and the **first valid observation by SWOT at time t_0**

$$ds1_{-[l|q]} = \frac{\Delta V_{l|q}(t_i)}{1000} - ds_{-t0}$$

storage change between the first valid observation by SWOT and the reference state

STORAGE CHANGE ALGORITHMS

STORAGE CHANGE

From SWOT Algorithm Theoretical Basis Document: L2_HR_LakeSP

The storage change variables in the LakeSP_Prior file:

- ds1_l: linear model with direct approach: volume of a trapezoidal prism
- ds1_q: quadratic model with direct approach: volume of truncated pyramid

Storage change uncertainty: $ds[1|2]_u_{[l|q]}(wse_u, area_{tot_u})$
=> cfr. ATBD for more information

STORAGE CHANGE ALGORITHMS

STORAGE CHANGE

From SWOT Algorithm Theoretical Basis Document: L2_HR_LakeSP

The storage change variables in the LakeSP_Prior file:

- **ds1_l**: **linear** model with **direct** approach
- **ds1_q**: **quadratic** model with **direct** approach
- **ds2_l**: **linear** model with **incremental** approach
- **ds2_q**: **quadratic** model with **incremental** approach

Based on the hypso curve (wse, area_total) => not yet available

VALIDATION APPROACH

STORAGE CHANGE

Example over Lake Orient (France), lake_id = 2320116363

PLD

lake_id	date_t0	ref_wse	ref_area	ds_t0
2320116363	2023-09-10 08:46:02	93.78	21.85692	0.879081

in situ

time	volume
t_0	v_0
t_i	v_i
...	...
t_n	v_n

VALIDATION APPROACH

STORAGE CHANGE

Example over Lake Orient (France), lake_id = 2320116363

PLD

lake_id	date_t0	ref_wse	ref_area	ds_t0
2320116363	2023-09-10 08:46:02	93.78	21.85692	0.879081

in situ

time	volume
t_0	v_0
t_i	v_i
...	...
t_n	v_n

VALIDATION APPROACH

STORAGE CHANGE

Example over Lake Orient (France), lake_id = 2320116363

PLD

lake_id	date_t0	ref_wse	ref_area	ds_t0
2320116363	2023-09-10 08:46:02	93.78	21.85692	0.879081

in situ

time	volume
t_0	v_0
t_i	v_i
...	...
t_n	v_n

VALIDATION APPROACH

STORAGE CHANGE

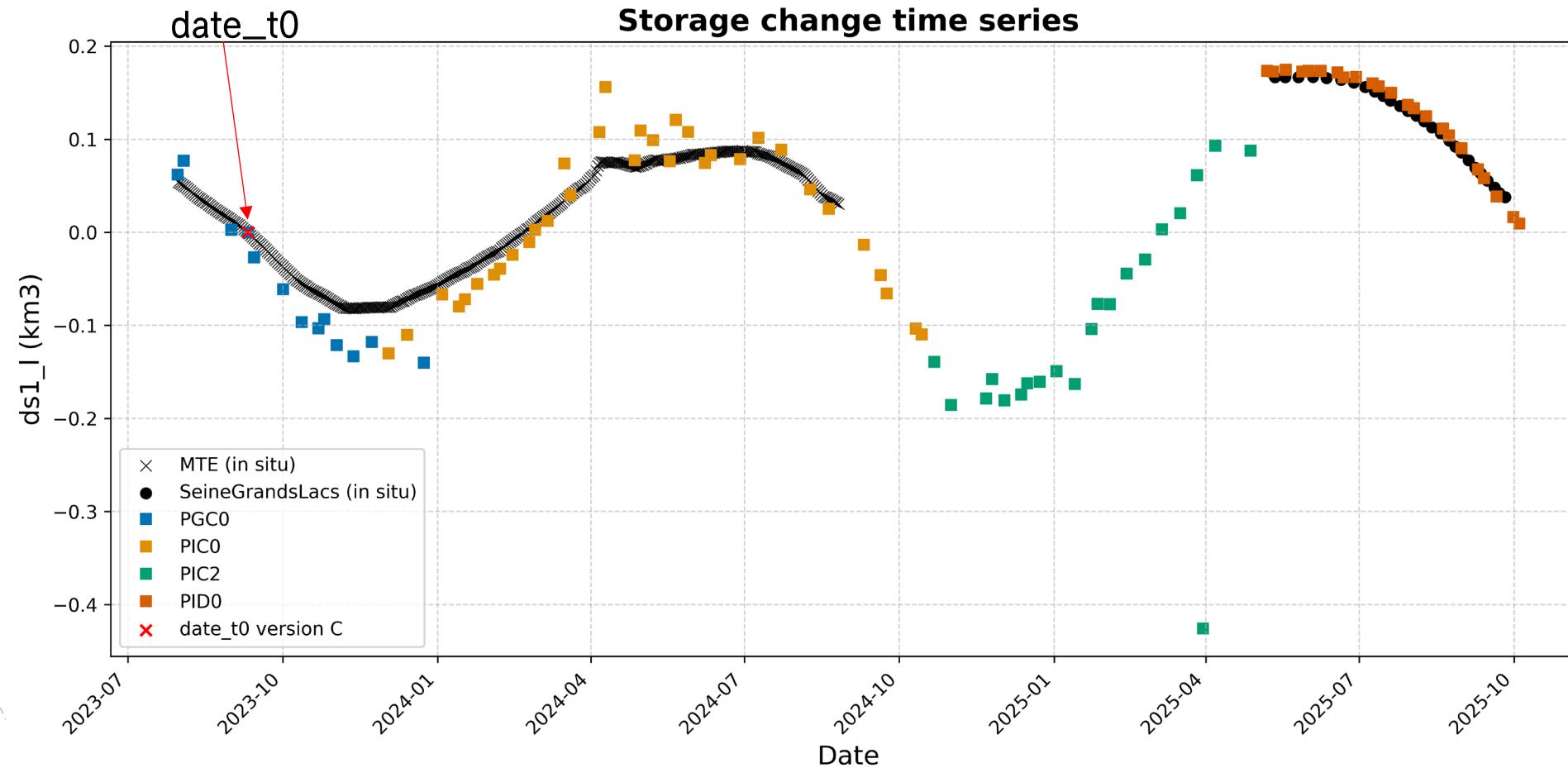
Example over Lake Orient (France), lake_id = 2320116363

PLD

lake_id	date_t0	ref_wse	ref_area	ds_t0
2320116363	2023-09-10 08:46:02	93.78	21.85692	0.879081

in situ

time	volume	
t_0	v_0	$-v_i$
t_i	v_i	
...
t_n	v_n	$-v_i$


time	Δv
t_0	Δv_0
t_i	$\Delta v_i = 0$
...	...
t_n	Δv_n

Volume variation comparable to SWOT storage change

VALIDATION APPROACH

STORAGE CHANGE

Example over Lake Orient (France), lake_id = 2320116363

SUMMARY AND OUTLOOK

STORAGE CHANGE

Version D LakeSP data

91% of PLD lakes with storage change

○ Note that the data have not been thoroughly validated yet! Please use with caution!

Future activities

○ Storage change validation (call for in situ data contribution)

○ Potential algorithm evolutions

○ Need for a storage change working group ?

Don't hesitate to share your work

SPREADING THE WORD: RELATED PRESENTATIONS

STORAGE CHANGE

Thu, Oct 16 2025, 09:00 - 10:30 Oral and 17:30 – 18:30 Poster

Hydrology: SWOT Lakes, Estuaries and Wetlands (SLEW)

- Improved SWOT surface water storage monitoring through multi-sensor harmonization (Levenson et al.)
- Water volume dynamics in West African lakes and reservoirs by SWOT and optical satellite sensors (Grippa et al.)
- Lakes and reservoirs storage changes from SWOT and ancillary database in Quebec (Canada) (Chuette et al.)
- Comparing multi-mission altimetry derived reservoir storage changes with SWOT Level 2 Lake Single-Pass product (Garkoti et al.)
- Monitoring surface water storage in Peruvian Andean lakes and reservoirs with SWOT and Sentinel-1: Toward integrated mountain hydrology (Visitacion Bustamante et al.)

among others...

THANK YOU FOR YOUR ATTENTION

Contacts:

mathilde.de-fleury@cs-soprasteria.com

manon.delhoume@cs-soprateria.com

claire.pottier@cnes.fr

roger.fjortoft@cnes.fr