Predicting Rating Curves for Global River Reaches

The SWOT mission provides data on an unprecedented scale globally and therefore presents the opportunity to improve Global Flood

Models.

We combine WSE levels from SWOT with daily discharge data to produce global rating curves for non-extreme events.

This statistical approach is a straight-forward method to estimating discharge from SWOT observation maximizing computation and time

efficiency.

Aims

We use SWOT River-SP I for WSE levels and GRADES-HydroDL 3! for daily discharge values. In order for our model to run, we
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therefore need valid data from both datasets.

Data -

Of the 158,942 river reaches in SWORD, 102,387 have valid data for both datasets and can therefore run our discharge model, of
which 52,499 also have valid filtered SWOT data, and therefore run our stricter model.

All validation is done on the stricter model.

Gauges

To use SWOT WSE levels to estimate discharge dynamics at global river reaches.

To present the minimal viable, but therefore most efficient, method to do this.

To understand the suitability and effect of a minimum exceedance probability we can model from SWOT.
To produce non-extreme rating curves that are globally consistent in both method and data inputs.

We create a level-flow relationship for each SWORD reach independently, using a 2-step quantile matching method:
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The probability of exceedance p of WSE is calculated empirically from observations, only for p < p,,;. Sensitivity analysis led us to chose p,,,;;, =
0.05. That is, for a timeseries of quality-filtered WSE data W, each value w has quantile p such that

p(w) =P(W =zw)
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« For SWOT, this is positive WSE levels labelled “good”, “suspect” or “degraded”, but not “bad”.
For GRADES, this is positive parameters, when an exponential distribution is fitted to the daily timeseries.
« To improve the model, we place stricter filters on the SWOT WSE data by applying the Montpellier configuration.

Based on the approach of Quimpo et al. 1], we obtain a frequency distribution of discharge by fitting an exponential distribution to a discharge
timeseries. That is, undefined, positive parameters A, a, and only when p < p,,;» , we assume that the discharge q has the form

q(p) = Ae™P

Probability of Exceedance

Level-Flow
We then quantile match these two distributions to estimate the discharge for any input WSE level from SWOT such that g(w) = q(p(w)).

w =D —=(q
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Data availability for all SWORD river reaches

 We compare to gauge data from USGS, NRFA, UKCEH, BOM, Eau France, ECCC, ANA and GRDC.

» 184 gauges after filtering by conditioning on the relationship between SWOT WSE and gauged discharge: for n the number of observations, r; the
Spearman R value, and 1, the Kendall Tau value, we only consider gauges such that:

n > 10, s > 0.8, T, > 0.8
We performed sensitivity analysis on p,,;,,, to choose the optimal value and to show the necessity for such a value to exist in our method.

We then evaluate both our model and GRADES flow values against gauge data on dates where there are all three.

Results
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The cumulative distribution functions of 6 metrics. The metrics obtained from comparing gauged data to GRADES
(only at SWOT observation dates) are shown in blue, and to our modelled data in orange. The location of each

Example reaches:
GRADES flow values are in
the correct range, but do
not follow the same
dynamics as the gauged
data, where our model does
by design, due to the skill of
SWOT WSE levels (b) and
GRADES does much better
but is still less consistent
than our model (a). The
position of these reaches in
the cumulative distribution
for each metric is labelled
on the cdf plots above.
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Count of reaches where p,,;,, is the optimal value, defined by 6 different metrics.
This is the smallest value for nRMSE and |nBias|, and the largest value for
Spearman R (rs), Pearson R (r), LNSE and KGE.

The cumulative distribution functions of [nBias|, nRMSE and r. The metrics are obtained from
comparing the discharge timeseries from gauges to that from our model, using different
Pmin Values, to the lower 90% and upper 10% of WSE observations.

« This method improves the predictive skill of the input discharge to discharge dynamics.
« The absolute bias is increased but not significantly.

* This model can be run for future SWOT observations without further computation from the flow-duration step
from the predefined parameters.

* Using p,,,in > 0 will improve accuracy, particularly in the larger events.

* Qur choice of p,;;; = 0.05 means we can still estimate discharge at 95% of all filtered SWOT observations.

Model-Gauge Comparison of WSE-Discharge Curves
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WSE-Discharge curves at 2 reaches. The gauged data is shown in blue, GRADES timestamped
data in orange, and the results of our model in green. Data values are shown by points, while a fitted
exponential curve is plotted for each method to show the overall trend.
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Model-Gauge Comparison of Discharge Timeseries
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Discharge timeseries for gauged (blue), GRADES (orange) and modelled (green) datasets. These
are only plotted on dates for which there was a valid SWOT WSE observation.

We can then apply a physical model to estimate the extremes, where statistics of historical data are less informative.

Conclusions
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