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1. SWOT discharge is computed from “primary data
(water surface elevation, slope, and width)
using simple flow laws

5. An ensemble of discharge estimates
is computed for each reach, and for both
the constrained and unconstrained
branches

2. Flow law parameter
estimation algorithms
will estimate
unobserved terms in
flow laws.

4. Gage-constrained —®— Unconstrained

3. Discharge will be discharge will use in situ —@— Gage-constrained
computed for river discharge measurements —&— True
reaches approximately to constrain flow law
10 km in length. arameters
minieng P Durand et al., 2023

SWOT discharge is derived from SWOT measurements of WSE, width and slope.
Expecation: discharge accurately tracks variations, with some timeseries bias.



Version 0 of SWOT discharge is public, though not global
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First global SWOT discharge is here!

~-% s - <
- ' 3 Sl R e
¢ . R ““\_,.- % .

A

8 This talk shows how are we validating
discharge, and describes current SWOT
discharge accuracy

Consensus Discharge m”3/s — 228 - 278
—0-5 — 279 - 339
—a-15 340 - 405
— 16 - 31 — 406 - 501
—32-52 502 - 651
53273 652 - 919
—74-97 920 - 1300
—98 - 125 1301 - 2206
— 126 - 153 2207 - 5145
— 154 - 185 5146 - 352949
— 186 - 227

Data is a Level 4 product.




SWOT Discharge Validation Plan
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How we measure discharge performance

SWOT discharge
is good at
tracking
variations in
discharge
timeseries. We
measure this skill
with the Pearson
correlation
coefficient r
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SWOT discharge is
growing in its ability
to measure
timeseries mean
discharge. We
meaure this sKill
with the absolute
value of the bias
normalized by the
true mean |nBias|

South Thompson River, British Columbia, Canada. Gage measurements by Water Survey Canada 6



Example discharge performance
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White River, Arkansas, US. Gage measurements by USGS



Example discharge performance
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This reach has a larger bias, =00 1
but its correlation with the
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SWOT discharge accurately tracks discharge variations

Median correlation indicates that
typically, SWOTaccurately tracks
discharge variations

The interquartile range [0.62-0.93]
indicates performance is robust
across a significant majority of
reaches

SWOT is meeting expectations!
Future work will aim to exceed the
target value of 0.9 more for the top
two thirds of reaches
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SWOT Q is achieving lower bias as algorithms mature

Median bias indicates that
typically, SWOT is a bit below
pre-launch expectations

The interquartile range [0.25-
1.24] indicates a need for
improvement.

SWOT is close to meeting
expectations: at least two
algorithm changes will improve
bias (stay tuned!)
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11



Understanding SWOT accuracy: Land cover & topography
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First version of global SWOT discharge captures spatial and
temporal patterns
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Version 1 Discharge will be released by December 1

Plan B: Release existing dataset. Version 1 will be NO WORSE than this!
e Global run produced summer 2025 has been shown
e Uses Version C SWOT data
e Reach-scale flow law parameter estimation algorithms are running, but algorithm
to “integrate” gage information across basin scale will be run next version
e \We filter less data out than in Andreadis et al. 2025:
Plan A: The latest & greatest
mproved algorithms and priors
Runs are nearly complete
A decision taken on Oct 24 which run will become version 1

Global runs done and checked in November.
Release improved documentation
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Plan A: New configuration is being tested and run!

e Cécile Cazals (INRAE) has created a new set of filters that allows
significantly more data into the Confluence run, with only a small loss of
accuracy “permissive + relaxed”. Huzzah!

e Heejin An (U Mass) has mapped new machine-learning derived prior
discharge estimates and done a Confluence run with these, improving
accuracy. Huzzah!

e Ellie Friedman (U Mass) has created a new “Consensus algorithm” that
improves accuracy by discarding aphysical discharge timeseries. Huzzah!

15



Version 1 Discharge will be released by December 1

Plan B: Release existing dataset. Version 1 will be NO WORSE than this!
e Global run produced summer 2025 has been shown
e Uses Version C SWOT data
e Reach-scale flow law parameter estimation algorithms are running, but algorithm
to “integrate” gage information across basin scale will be run next version
e \We filter less data out than in Andreadis et al. 2025:
Plan A: The latest & greatest
mproved algorithms and priors
Runs are nearly complete
A decision taken on Oct 24 which run will become version 1

Global runs done and checked in November.
Release improved documentation
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Algorithm changes for Version 2 (2026) include:

Version D SWOT data

Version 17 SWORD

New Machine-Learning priors that overlap in time with the SWOT period
More permissive data filters

Better consensus algorithm

River hypsometry constraint

Integrator algorithm We fully expect these.
Constraint to more in situ data changes should significantly

improve discharge skill!
Continued bug fixes

17



Summary

The first look at SWOT discharge is published: Andreadis et al. GRL 2025

The first global SWOT discharge products (Version 1) will be online by December
1: discharge timeseries variations are tracked well, with some bias. SWOT
discharge meets expectations qualitatively; quantitative accuracy is improving!

SWOT Discharge Version 2 will be out next year. We expect significant
improvement in accuracy, from new algorithms, and new priors

Space Agency Level 2 discharge products will accompany Discharge Version 2
next year

18



Extra Slides



SWOT discharge flavors have both quality and quantity!

The RF data has ten or more observations for 50,048 of the 58,433 reach-
observable reaches (86%) - 5x more than Andreadis et al. 2025! There are a total
of 1.2 M such observations in all.

Further filtering to the MF data (requires height-width correlation), you lose only
17% of the reaches

The LF data (does not require reach observations) has more data, but at
somewhat lower quality: data on XX reaches, and YY in all.

20



On which reaches do we expect SWOT discharge? On
which do we attempt to exceed expectations?

e It is not expected to have SWOT discharge everywhere
e There are a total of 58,433 reaches that are “reach observable’, in-line

with pre-launch expectations:
o Rivers (type 1) rather than reservoirs or dams
o Reach width >80 m
o Reach slope > 3.4 cm/km
o Reach length > 7 km

e FLPE algorithms based on node data rather than reach data increase
spatial and temporal coverage: there are potentially up to 158,942 “node
observable” reaches: an ambitious effort to improve coverage

21



Expected data quality and quantity varies by ice-eream
SWOT discharge flavor

Most of the
reach
observable
reaches
have height
width
correlation
and thus
have the
highest
accuracy
timeseries

Reach Observable All River Reaches

8 385 8942
8434 ‘
41 614
THIS GRAPH
m successful & HW correlated
150 000

m successful (but no HW correlation)

m successful = unsuccessful

= unsuccessful

On reaches where we expect it, we have discharge 86% of the time. In most of these
reaches, we believe we are accurately tracking discharge variations! 22



We have far more high quality data in v1 than we did in vO

Reach Observable v0 Reach Observable v1

I 11 289

47 144 50 048

8 385

m successful = unsuccessful m successful = unsuccessful

Compared with vO (Andreadis et al. 2025), we now have successful discharge timeseries in
5x more reaches!
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Leveraging diversity among algorithms improves SWOT
discharge timeseries data volume

“ SR IAT 3 000 000
There are ~2.5M “potential” discharge
. . . 2 500 000
observations, after accounting for ice, data
. . 2 000 000
downlink issues,
1 500 000
We have nearly 2.4M actual Q 1000 000
observations, when you do not require 500 000
concurrent reach observations 0

Potential LF Qobs RF Qobs

We have 1.25 M RF Q observations. Qobs

Note: A naive expectation is that
we would have ~6M total
discharge observations in this run o,



Review of Update Part 1 (Wednesday) Talking Points

e Science Team (Level 4) discharge products are now available
o VO (Andreadis et al. 2025) is available now, over a subset of reaches
o v1 will be available [to be decided on at Bordeaux, insert update]
o v2 will be available in 2026
o Accuracy qualitatively in line with pre-launch expectations: we track temporal variations, but
observations have timeseries bias
m New algorithms are expected to improve accuracy
o Fraction of observations that pass quality filters is far lower than expected pre-launch
m Version D data products are expected to improve usable data volume

e Space Agency (Level 2) discharge products will be available in 2026

25



More Technical Summary

e \ersion 1 has a 5x increase (over v0) in SWOT discharge that accurately
tracks (RF) river discharge temporal variations: ~50k reaches of ~58k
reaches.

e On these reaches, median correlation is ~0.75

e Our filters discard ~half of expected reach observations

e Nearly all of the remaining ~101,000 reaches have discharge timeseries of
slightly lower skill

e Flagging is being added to indicate skill difference, prior to release

e Discharge v1 will be released publicly by December 1, 2025

26



New algorithms for v2: hypsometric constraint

a) b)

Empirical CDF

ECDF of 1 o error under Hypsometric Constraint ECDF of NSE under Hypsometric Constraint
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Understanding SWOT accuracy: Bigger is not always better
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Coss et al., in prep. 29
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SWOT discharge mean flow accuracy has improved

However, accuracy
on average is not
improving compared
with the prior mean
flow, as they did in
pre-launch studies.
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For the Level 4 products, constrained does not “spread” gage information
across basins, and bias is expectedly unimproved over unconstrained.

This will change for v2. 32

Coss et al., in prep
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