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SWOT Maps Global River Water Amplitude
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More than 5 millon of
kilometers river length
observed by SWOT

Moreira, Papa et al., 2025
SGB/IRD/LEGOS/CNES



SWOT Reveals Global Node-Scale Width-Stage Relationships
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SWOT Observes the

Globally

Shape of the active river
corridors along major global
rivers as observed by
SWOT. The shapes result
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from one year of SWOT
measurements between the
lowest and highest observed
water levels.

Wade, J., Cerbelaud, A., David, C., Durand,
M., Frasson, R., Pavelsky, T., Oubanas, H.
“Wide-Swath Altimetry Maps Bank Shapes and
Storage Changes in Global Rivers”. In review.
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Pavelsky, T., Oubanas, H.
Shapes and Storage Changes in Global Rivers”. In review.

11/13/2025

SWOT Observes the Variability
of River Storage Globally

Global map of river storage
variability observed by SWOT
between  October 2023  and
September 2024. a, SWOT observed
timing of the peak river storage
anomaly . b, SWOT annual observed
river storage variability .

Wade, J., Cerbelaud, A., David, C., Durand, M., Frasson, R.,
“Wide-Swath Altimetry Maps Bank

This document has been reviewed and determined not to contain export controlled technical data.
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Count of Reaches

SWOT Reveals Baseline Hydropower
Potential Globally
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SWOT Reveals Strengths and Weakness of
Global River Models

Anti-Correlated ML SES

Direct indicator of model dynamic error and an indirect indicator of its
bias, and thus these maps are a reflection of the state of globally
modelled river knowledge.

Gleason, C., Bates, P, et al. “Using the SWOT satellite to assess the strengths
and weaknesses of global river models”.



Tides in Rivers from SWOT
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SWOT Captures Downstream Changes in River Height during a Flow Wave

—— Mississippi River Basin

Flow wave detections based on SWOT
WSE exceedance of the reach-level

07-26-2023 13:00 90th percentile (in red) along with
SWOT observations (in blue).

Thurman et al. 2025. Geophysical Research Letters

12



SWOT Maps Water Surface Elevations on Global Lakes
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Over the past 1.3 year (23 science orbit cycles), 5,320,303 (90%) out of the ~6 &
million prior lakes, accounting for 96% of the global lake area with a minimum

Valid measurements:
*  Nominal quality

e Ice/snow free Baseline % size of ~1 ha, were observed with at least one valid measurement by SWOT.
’ Gcﬁod crossover filter « Lake extents in the map are based on the SWOT Prior Lake Database (PLD v103).
calibration

* Lake WSEs are processed from LakeSP_Prior (v2/C) during the science orbit

cycles 1 to 23 (07/21/2023 to 11/11/2024). e W (U e e, el



SWOT Captures Variability in Global Lake Storage Change
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Reservoirs account for ~3% of the global
lakes by count but nearly half of the total
intra-annual water storage variation.

847.0 Gt
(47.4%)
Total storage
4,930,006 Count B 435 701 variation
(97.3%) (2.7%) 939.0 Gt

(52.6%)

Lakes with only one measurement are excluded from change statistics.

« Statistical outliers
& (LOWESS residuals
T exceeding 2.6 sigma)

Irrigation \
reservoirs > &

across India ‘:"«5 : ® Baseline

Reservoirs across
| Ceara and Cerado
regions, Brazil

As early estimates, lake water storage variation is estimated by SWOT-measured WSE variation P
multiplied by the static prior lake area. -

More accurate, realistic results will become available with the accumulation of SWOT data.

Reservoirs experience ~54—-620% more intra-annual storage variation than natural lakes due to direct
human water management.

Jida Wang (U of lllinois), et al.



SWOT Provides Unprecedented Lake dynamics Overview
on West African lakes
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SWOT allows estimating mean annual water level amplitude of 1300+ lakes

75% lakes show amplitude < 2 m comparable to average evaporation
loss, suggesting limited human use

100

80

60

Counts

40

20

1

2
Mean annual water level amplitude (m)

3

N = 1348

Natural lakes
N=1221

Reservoirs
N=127

CDF

All water bodies

4 B

Girard et al. 2025b, IEEE JSTARS

6

-100%

-80%

-60%

-40%

20%

0%

Cumulative percentage



Good agreement between SWOT HR and in situ GNSS data over
lake/river ice near Fairbanks, AK

Mean bias: 15cm Mean absolute bias: 37cm
Performance varies spatially and warrants further investigation
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Figure 2. A. Histogram of the elevation difference between

SWOT and GNSS agreement and B. Empirical cumulative
distribution function for each waterbody.

Xiao Yang
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Spatially varying differences between SWOT and GNSS elevation.



SWOT Estimates Wind over Lakes using Backscatter Information
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over lakes with SWOT and Sentinel-1 satellite observations. Earth and Space Science.



Preview of Coming Attractions

Improved width and area representation (discussed Wednesday)
Availability of floodplain DEMs (Weds)

Lake and Reservoir water storage dynamics (Weds & Fri)

Preparation of the first global discharge product (Weds & Thurs)
Tracking lake and river ice with SWOT (Thurs)
Updating global hydrology & flood models with SWOT (Thurs & Fri)

Goal for 12 months from now: submit a community paper to AGU
Advances (or similar) showing how SWOT has advanced hydrology
science and applications
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SWOT Captures Extreme Drought on the Amazon Basin
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SWOT Monitors fluvial geomorphology
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Example 1: SWOT can track shear
bed stress along rivers through space
and time to study sediment transport
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Stroud, M., Allen, G.H., Minear, J.T., Cisneros, J., Smith, L.C. (in review)

The SWOT Satellite: A New Tool for Fluvial Geomorphology. GSA Today.
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Potential in Detection of Irrigation Events
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Bazzi et. al., 2025, under revision



Monitoring Glacial Lake ,, : _ |
QOutburst Flood (GLOF)

16 August 2024, Nepal 8.0

GLOF triggered by the ;
27.9(
overtopping of a newly formed

glacial lake that cascaded into a

Latitude

Khumjtng
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: KR o |
downstream lake, causing both 27 81 2 e o Namche -

to suddenly drain.

Sherpa, S. F., Smith, L. C,, Wang, B., and Stuurman, 277
C.: A Case Study Demonstration of how Multisource
Remote Sensing Can Aid Early Detection of Glacial
Lake Outburst Flood Hazards (Under review).

Municipality boundary

— River network

Funding support: NASA SWOT Science Team Glacial lakes
(grant BONSSC20K1144) and National Science 27.6
Foundation (NSF) Earth Sciences Postdoctoral
Fellowship
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Flood damage zone
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Monitoring Glacial Lake Outburst Flood (GLOF)

27.83

Lattitude

27.82

27.84 @) . p 27.84
Sentinel- 2 NDTI (Oct. 15, 2019) WOT WSE (June 29, 2024)
PlanetScope (Oct. 14, 2019) lanetScope (Aug. 15, 2024)
o 27.83 27.83
©
2
27.82 % 27.82

_»
86.57
Longitude

86.57
Longitude

Sherpa, S. F., Smith, L. C, Wang, B., and Stuurman, C.: A Case Study Demonstration of how
Multisource Remote Sensing Can Aid Early Detection of Glacial Lake Outburst Flood Hazards
(Under review).

Funding support: NASA SWOT Science Team (grant SONSSC20K1144) and National Science
Foundation (NSF) Earth Sciences Postdoctoral Fellowship

L Detection of newly forming glacial lakes from space
using Landsat

O High water turbidity from Sentinel-2 (glacial
meltwater indicator)

O SWOT water surface elevations reveal high pre-
GLOF hydraulic head differences, suggesting high
stream power, bed shear stress, and erosive power
potential between the two lakes (lakes 1&5).
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