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Context: SWOT provides stunning pictures of energetic internal solitary waves
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and Indonesia provides a wealth of case studies. AR |
We focus here on the Maluku’s Sea which is an area of low ocean and atmospheric
energy, thus providing conditions for favorable observations of these features. T
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Main goal: extract internal solitary wave properties and describe them in light of N e s R Rt
available theoretical theories e @ e T e
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Wave detection and characterization

cylindrical projection
peak detection

iy collection of wave properties:
manual editing

width/amplitude/position/orientation

shape inference
Bayesian MC
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Parameters from vertical mode computation

Theoretical framework: KdV e space variability is non negligible
e time variability is weak

- weakly-nonlinear long wave regime
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- mode 1 vertical mode: n(x, z,t) = A(x, H))P(z) - ,.Hlir '
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- SLA given by 7’](0) = A(I)(O) c i c c
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- Surface horizontal divergence: 0,u = go,n/(c — Up,) o |
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- solution: A = Ay/cosh’[(x — V#)/L] with: V = ¢ + aAy/3, L = \/12p/(aA,) T
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front loc vs. travel time (ref method: min) wave amp (amp_qtile, n_peak) vs tide amp 30 C
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