Internal tide energy decay in the equatorial Pacific
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* The combination of errors in the amplitude A and phase @ is determined by RMSE = \E ((AR cos@r — ApcosPr)? + (Ap sin@Pr — Ap sin (Z)T)Z)
where subscripts “R” and “T” denote ROMS and TPXO, respectively
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 However, without wave drag,
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flow interactions that
contribute to the internal tide
decay and the high wave
number energy
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6.0 Conclusions Future Work

, _ o _ We will run a 2-km resolution child solution of the equatorial Pacific (magenta
* ROMS shows good spatial agreement with both barotropic tidal model and, nadir box in Panel 2.0) with increased vertical resolution (200 g-layers) nested

and wide swath satellite altimetry datasets but it is more energetic within the ROMS 6-km parent run

* |In both model and observations, we observe the decay of the internal tide energy
across the equatorial Pacific, but it is more pronounced in the observations

We will validate the stratification, background flows and internal tides in the
2-km child solution against climatology and SWOT data
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