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gravity using Machine Learning

How we can use SWOT to support global
efforts to map the sea floor?
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Bathymetry from SWOT “”“I

10mI

» Band-passed gravity is highly correlated with bathymetry
» ~98% of the signal in the MSS is gravity
» Gravity at the sea surface is attenuated at ~4 km

300 mGal I

Decrease in SSH error has huge impact on 6000 m I
bathymetric prediction!

Technical University of Denmark
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= Status of global ocean-floor mapping
Ships cover 26% of the global ocean
» SeaBed2030 has made great progress (~6% to 27%) 100 T—— E——— 35 s~
» The abyssal plains make up > 50% of the sea floor, 80 ] —— Test Soundings il i::t“dings
yet only 25% of this is mapped g 7T puseundoes ot 't Soundings
« This is the region with best gravity-inversion & 8 o dinge
performance § ;— Figor
» Traditional regions of interest are best mapped <
* We want to spend ship-hours wisely — . . . .
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Status of global ocean-floor mapping
SWOT covers ~98% of the ocean surface

Marine gravity anomaly from SWOT
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Yu, Y., Sandwell, D. T., & Dibarboure, G. (2024). Abyssal marine
tectonics from the SWOT mission. Science, 386(6727), 1251-1256.
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DTU
= Optimal utilization of SWOT for bathymetric inversion

oo

» Goal: Provide the best bathymetry map, from SWOT data, utilizing Machine Learning
» Setup: Five groups working with the same data, with five different methods
»2xDTU, SIO, NCU and NRL
» Combination: combine individual models in order to provide the optimal solution
» Evaluation: withheld data used to evaluate all five models

Linear inversion + Nadir Machine Learning + SWOT Ship soundings
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oo

= Optimal utilization of SWOT for bathymetric inversion

» Goal: Provide the best bathymetry map, from SWOT data, utilizing Machine Learning
» Setup: Five groups working with the same data, with five different methods
»2xDTU, SIO, NCU and NRL
» Combination: combine individual models in order to provide the optimal solution
» Evaluation: withheld data used to evaluate all five models

1. DTU-DNN: Deep Neural Network
2. SIO-DNN: Deep Neural Network
(3. NCU-DNN: Deep Neural Network

] First talk of the session

4. DTU-DKL: Deep Kernel Learning
5. NRL-CNN: Convolutional Neural Network




DTU
= Optimal utilization of SWOT for bathymetric inversion

oo

» Goal: Provide the best bathymetry map, from SWOT data, utilizing Machine Learning
» Setup: Five groups working with the same data, with five different methods

»2xDTU, SIO, NCU and NRL
» Combination: combine individual models in order to provide the optimal solution

» Evaluation: withheld data used to evaluate all five models

Ensemble Elevation

-6 = -2 0
4 P km
- Model dissagreements
Simple ensemble model 1 N
2 2
oy = N Z(Tn — (1))
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Ensemble Standard Deviation
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= Optimal utilization of SWOT for bathymetric inversion

oo

» Goal: Provide the best bathymetry map, from SWOT data, utilizing Machine Learning

» Setup: Five groups working with the same data, with five different methods
»2xDTU, SIO, NCU and NRL

» Combination: combine individual models in order to provide the optimal solution

» Evaluation: withheld data used to evaluate all five models
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Resolving fine-scale features
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SWOT resolves small scale features
Linear inversion + Nadir
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- How SWOT can help identify areas of interest
Global dataset of gravity anomalies

Ensemble Absolute Test error
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Establish features that could
influence prediction error
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Residual analysis
Estimating errors in order to prioritize ship mapping

i

» Establish features that could explain prediction error

Trained-on features

Gravity + gravity derivatives
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Location (lat/lon)
Depth

ML builds upon drawing from
distributions: we compute out-of-
distribution estimates from features
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Residual analysis
Estimating errors in order to prioritize ship mapping

» Establish features that could explain prediction error

Trained-on features Aux features

Distance to nearest training sounding

Gravity + gravity derivatives

Location (lat/lon)
Depth

ML builds upon drawing from
distributions: we compute out-of-
distribution estimates from features

Technical University of Denmark
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= Residual analysis

Estimating errors in order to prioritize ship mapping

» Establish features that could explain prediction error

Trained-on features

Gravity + gravity derivatives
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Location (lat/lon)
Depth

ML builds upon drawing from
distributions: we compute out-of-
distribution estimates from features

Aux features

Distance to nearest training sounding

Distance to nearest multibeam training sounding

Trained features
Bayesian ML

DTU-DKL Predicted Uncertainty
50 100 150

Model diss_ag_reements

Standard D

Technical University of Denmark



= Combining prediction-features to estimate errors

Prediction Confidence Level
Mapped High , Medium

Covered by
IBCAO

Correlation

Geographical Distance 0.16
Features Distance 0.32
DKL SD 0.38
CNN SD 0.43
Ensemble SD 0.44
Multivariate Regression 0.54

Technical University of Denmark
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Inspecting features of interest

Distance to nearest training sounding Prediction Confidence Level Elevation
100 High = Medium Low

Higher uncertainty due to
data gaps in the southern ep
ocean

80°E
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Inspecting features of interest

Distance to nearest training sounding Prediction Confidence Level Elevation
10 100 1000 High  Medium Low

i

Higher uncertainty due to
data gaps in the southern
ocean

Large features causing
large uncertainty next to
swaths (emperor
seamounts)

Technical University of Denmark



DTU
Inspecting features of interest

Distance to nearest training sounding Prediction Confidence Level Elevation
1000 High = Medium Low

i

Higher uncertainty due to
data gaps in the southern ep
ocean

Large features causing
large uncertainty next to
swaths (emperor
seamounts)

Large seafloor roughness
causing overall higher
uncertainty, while area of _
interest is mapped (Mid-

ocean ridge)

Technical University of Denmark
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We can prioritise expensive ship-time
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Atlantic and Pacific are better mapped than Indian
and Southern ocean

We go from ~74% to ~7% need for priority ship
mapping

Medium confidence is needed as areas around
features is nessesary for overall mapping

Other _Atlantic __Arctic Southern

Pacific _ Indian

p il SN

Percentage Cover

Mapped High Confidence Medium Confidence | Low Confidence |

Global Oceans
Pacific Ocean
Indian Ocean
Atlantic Ocean
Southern Ocean
Arctic Ocean'
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13.8
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44.5
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Conclusions

We can prioritise expensive ship-time

Naive introduction of SWOT improves bathymetry
estimates with ~10%

Introduction of ML methods push this to 30-60%
improvement

Thank yOU fOr the attention! Inspection of features reduces needed "mapping

time” from 74 years to 7 years

Ensemble model will be available for use

Questions? s

Contact: Bjarke@space.dtu.dk

Technical University of Denmark
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Current outlook on bathymetry prediction
And the impact of SWOT on marine geodesy

ML Prediction assuming mean T;p and Ggp
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As bathymetry prediction reaches it’s limit, the 60 1 &~

potential for "full” physical inversion increases

» Physics based ML method
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