

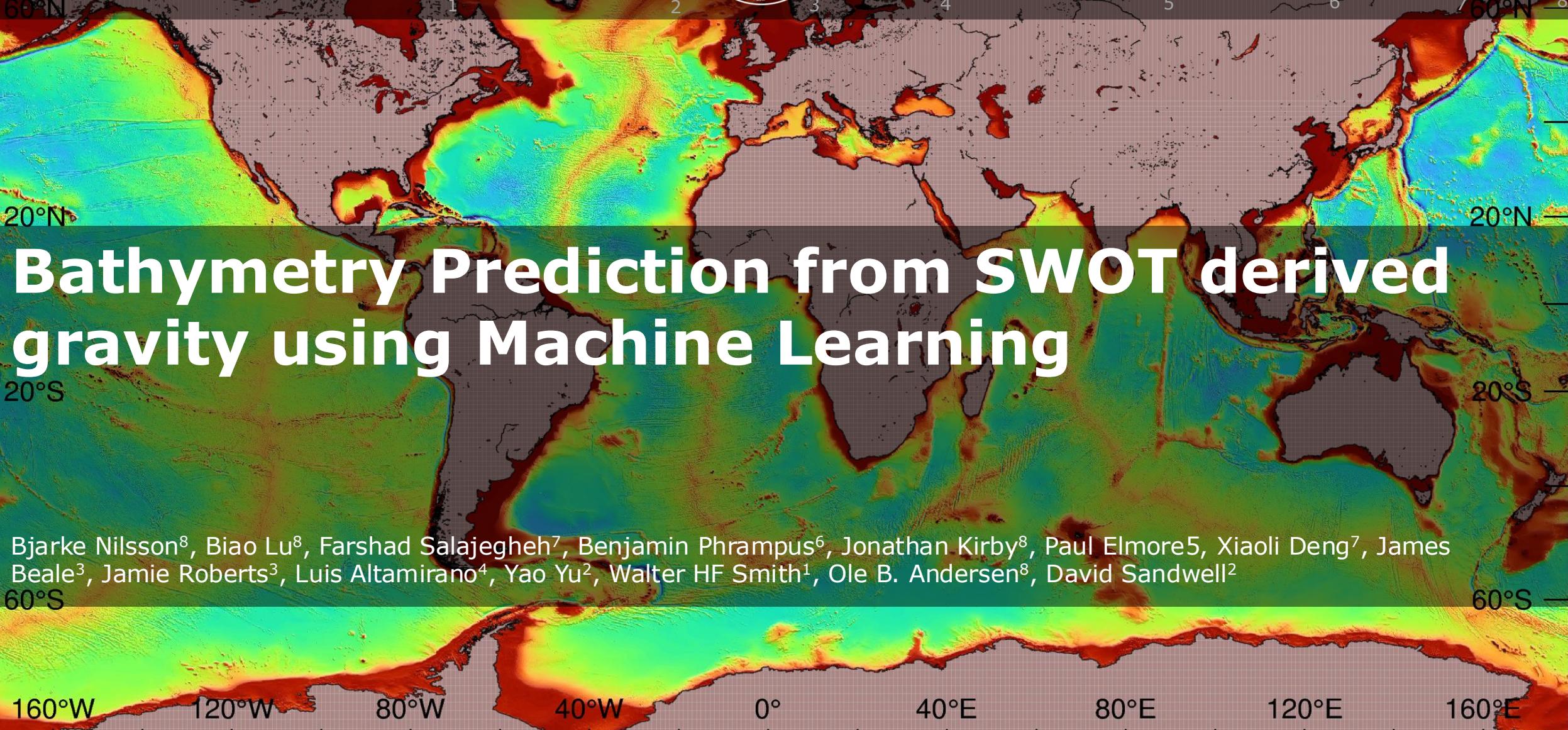
SWOT Science Team Meeting 2025

UC San Diego
SCRIPPS INSTITUTION OF
OCEANOGRAPHY

THE UNIVERSITY OF
SOUTHERN MISSISSIPPI
JOHNS HOPKINS
APPLIED PHYSICS LABORATORY

U.S. NAVAL
RESEARCH
LABORATORY

THE UNIVERSITY OF
NEWCASTLE
AUSTRALIA



SWOT Science Team Meeting 2025

UC San Diego
SCRIPPS INSTITUTION OF OCEANOGRAPHY

THE UNIVERSITY OF SOUTHERN MISSISSIPPI
JOHNS HOPKINS APPLIED PHYSICS LABORATORY

U.S. NAVAL RESEARCH LABORATORY

THE UNIVERSITY OF NEWCASTLE AUSTRALIA

Mapped
Low Priority
High Priority

Bathymetry Prediction from SWOT derived gravity using Machine Learning

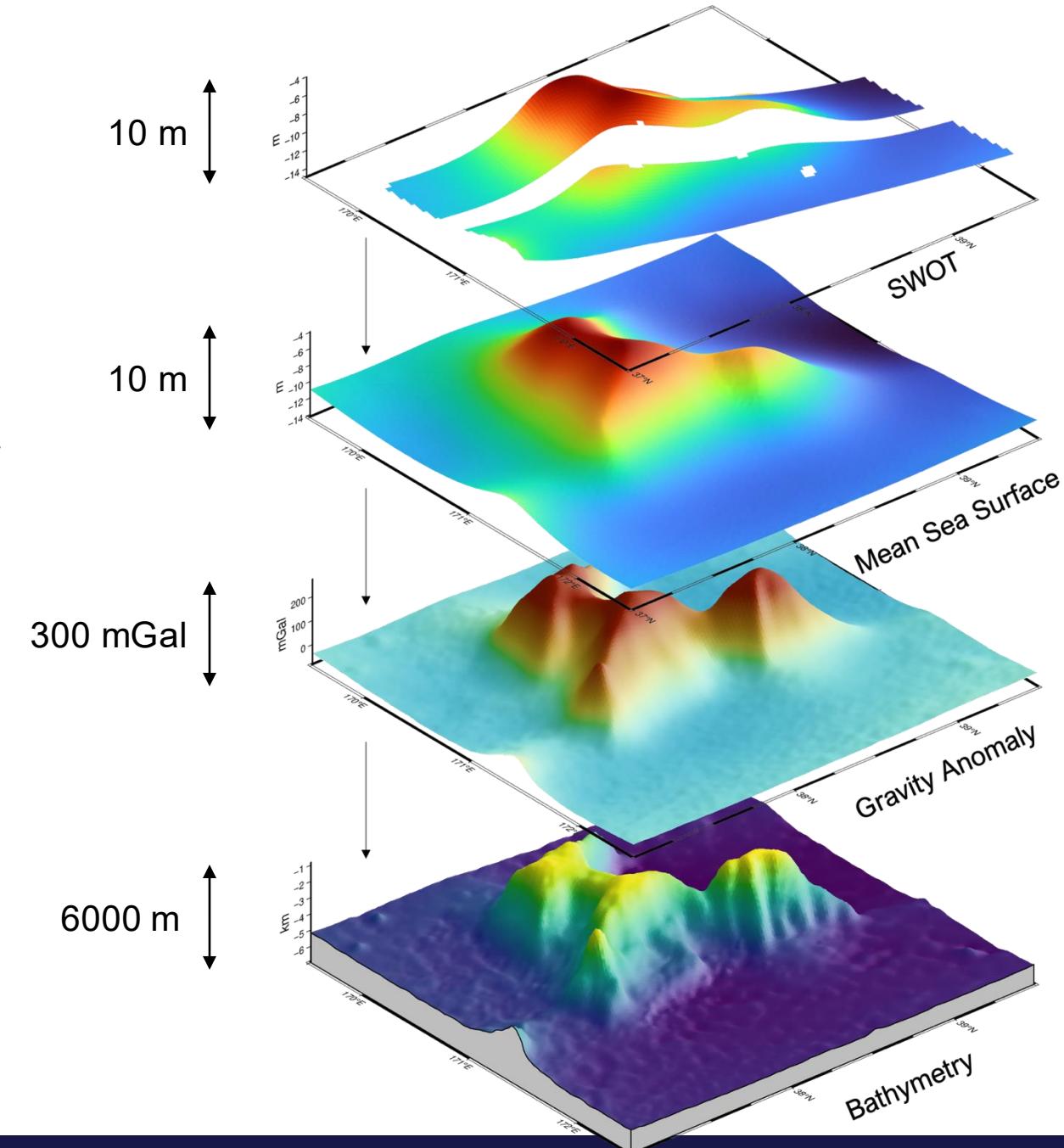
How we can use SWOT to support global efforts to map the sea floor?

Bjarke Nilsson⁸, Biao Lu⁸, Farshad Salajegheh⁷, Benjamin Phrampus⁶, Jonathan Kirby⁸, Paul Elmore⁵, Xiaoli Deng⁷, James Beale³, Jamie Roberts³, Luis Altamirano⁴, Yao Yu², Walter HF Smith¹, Ole B. Andersen⁸, David Sandwell²

Bathymetry from SWOT

- Band-passed gravity is highly correlated with bathymetry
- ~98% of the signal in the MSS is gravity
- Gravity at the sea surface is attenuated at ~4 km

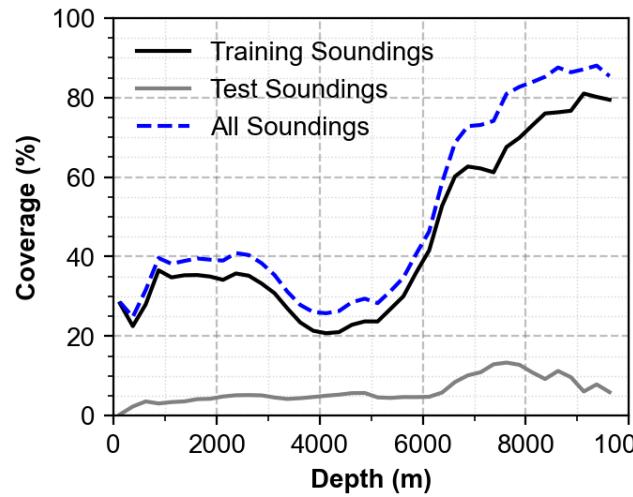
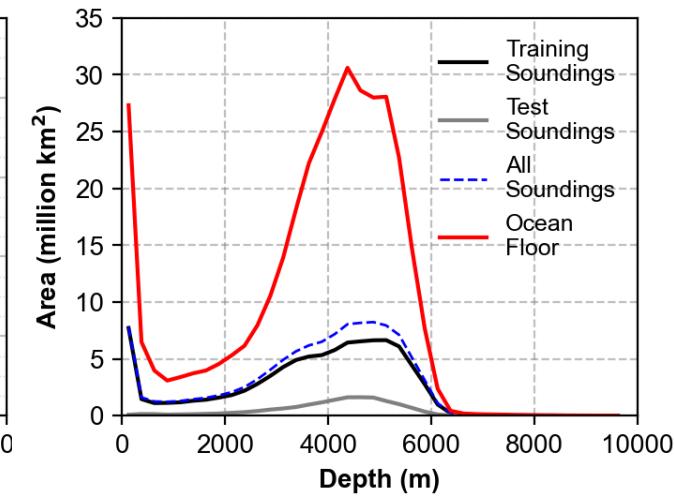
Decrease in SSH error has huge impact on bathymetric prediction!



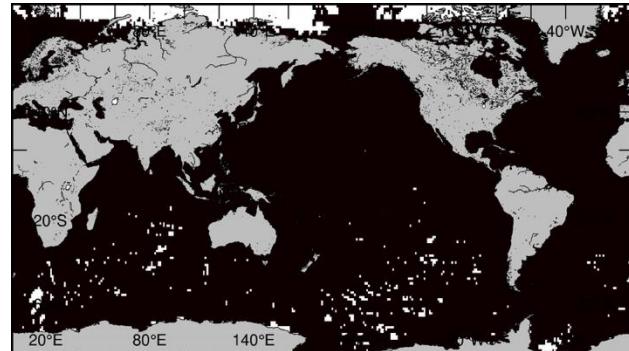
Status of global ocean-floor mapping

Ships cover 26% of the global ocean

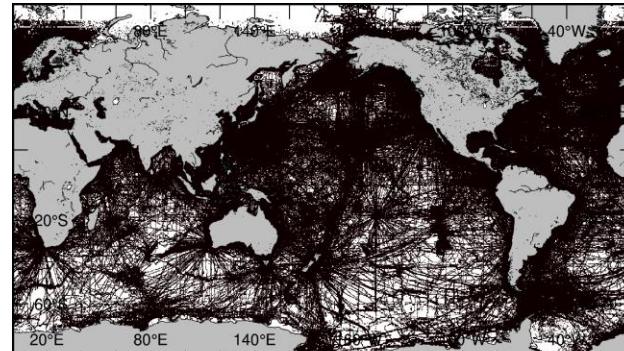
- SeaBed2030 has made great progress (~6% to 27%)
- The abyssal plains make up > 50% of the sea floor, yet only 25% of this is mapped
 - This is the region with best gravity-inversion performance
- Traditional regions of interest are best mapped
 - We want to spend ship-hours wisely
 - Current speed is ~1% mapped per year



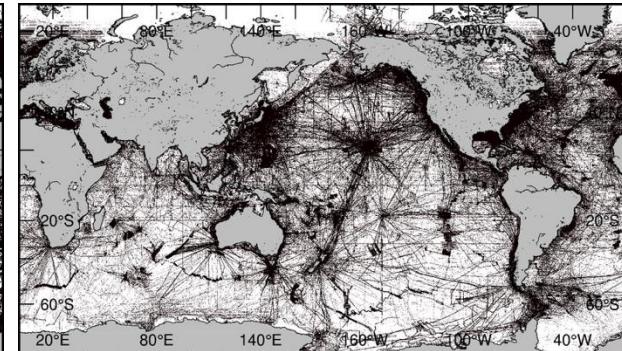
Ship Coverage at 100 km resolution



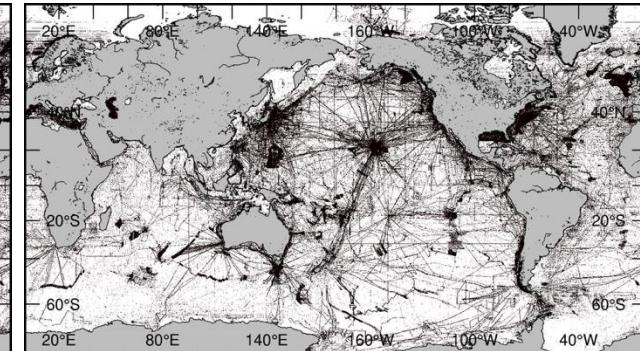
Ship Coverage at 25 km resolution



Ship Coverage at 5 km resolution

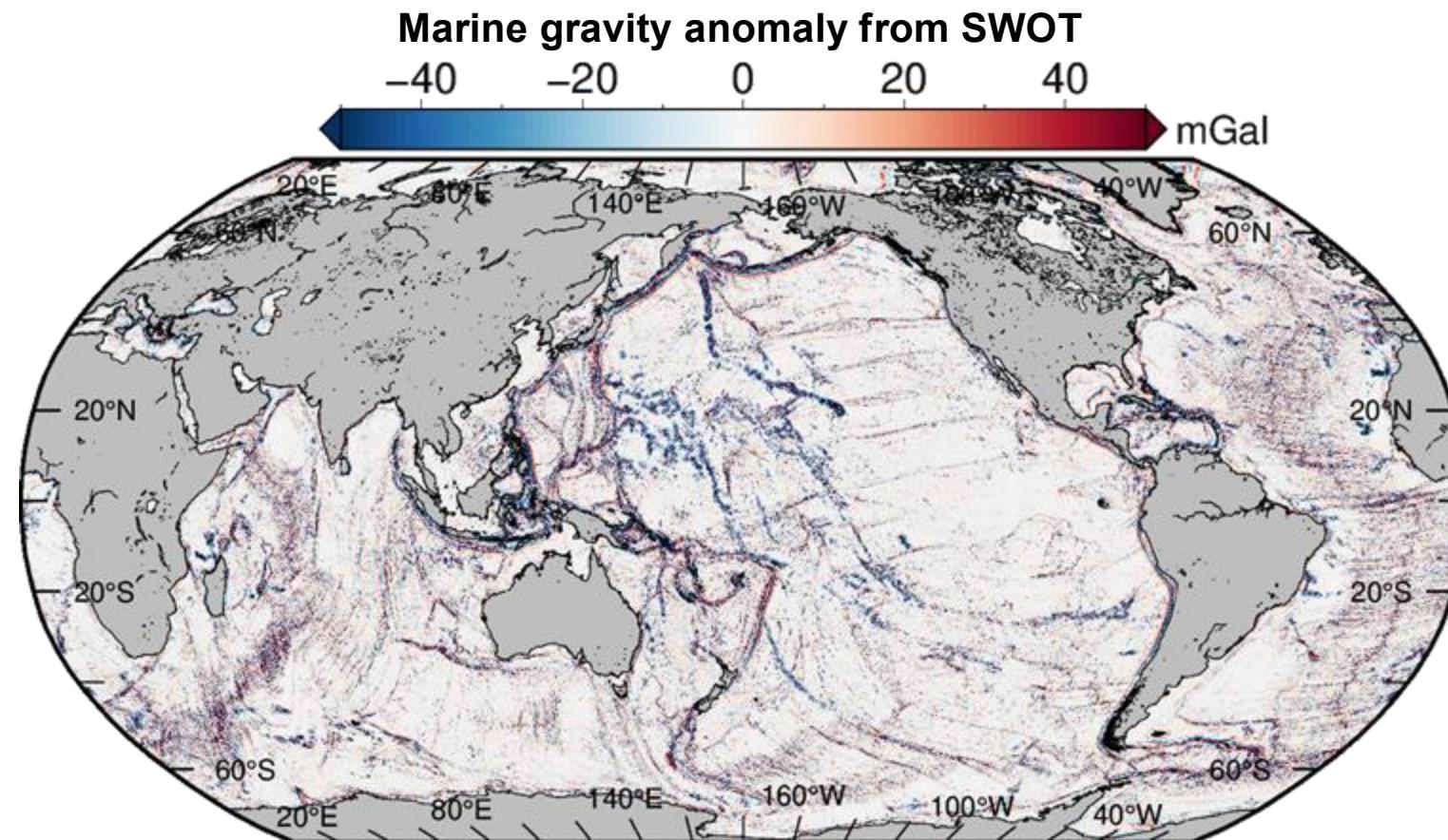


Ship Coverage at 2 km resolution



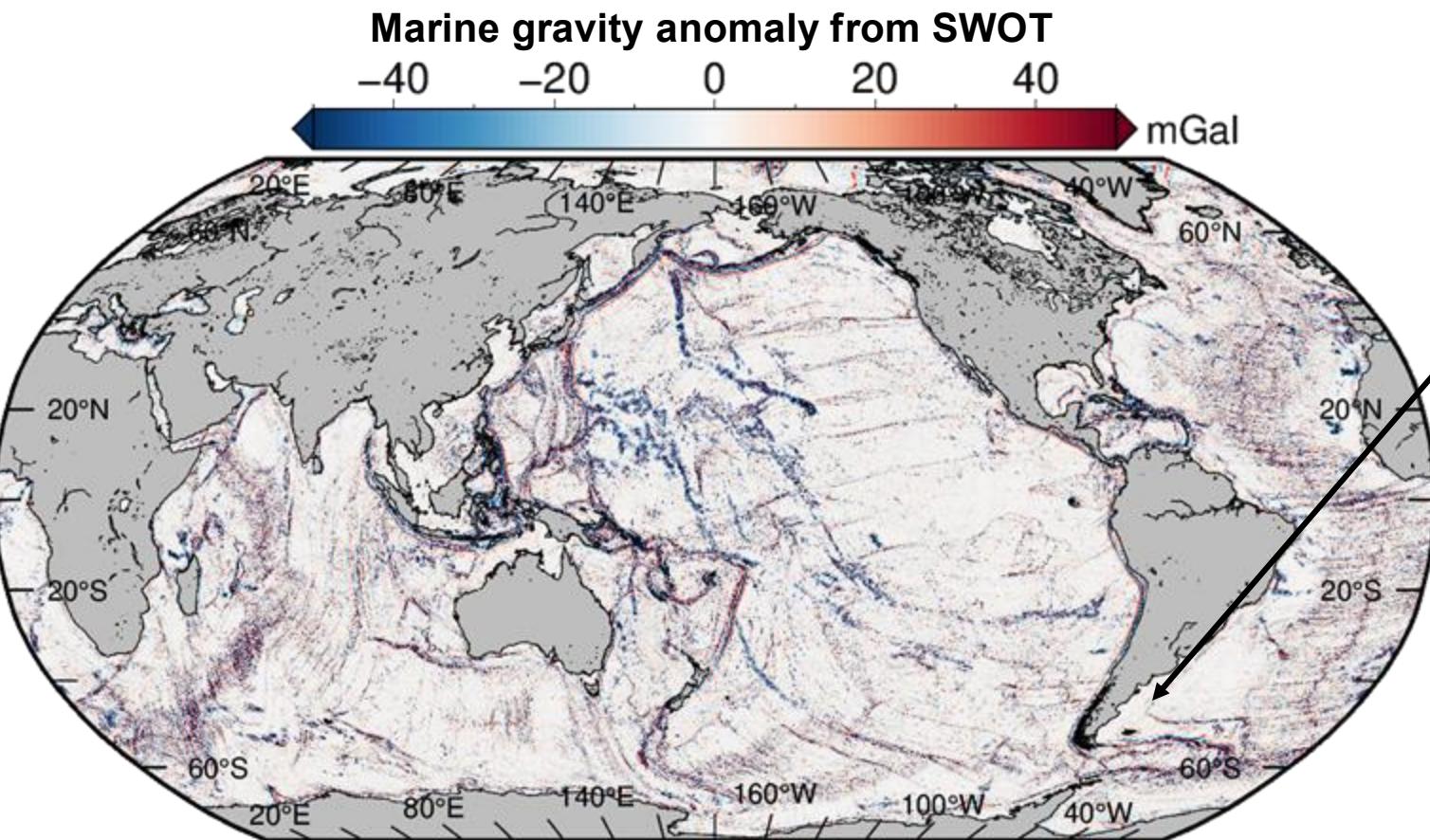
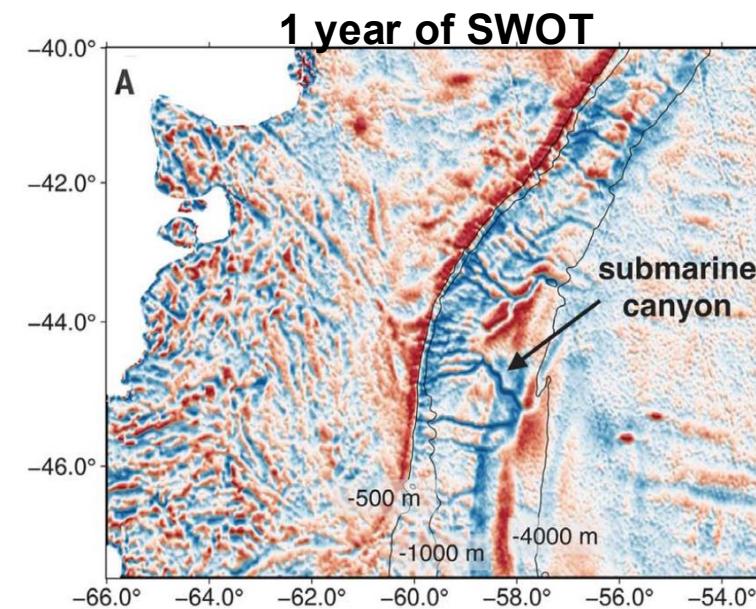
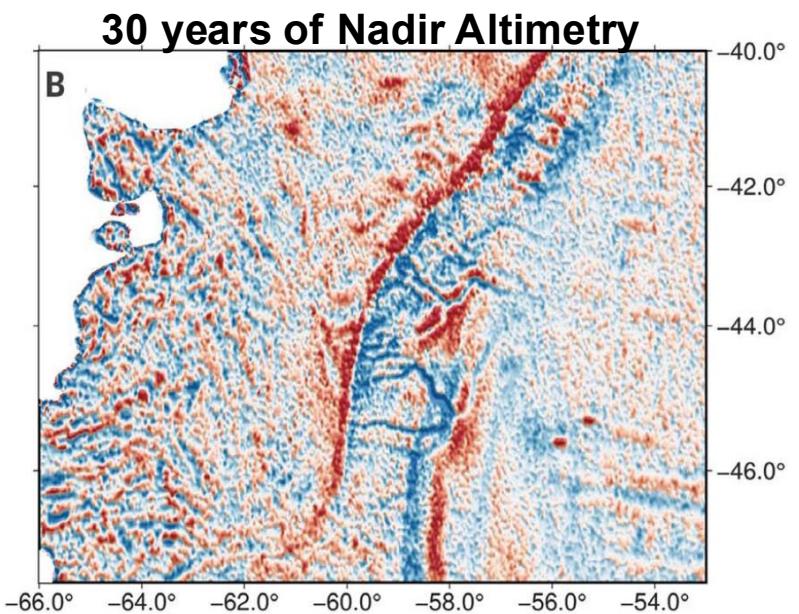
Status of global ocean-floor mapping

SWOT covers ~98% of the ocean surface



Status of global ocean-floor map

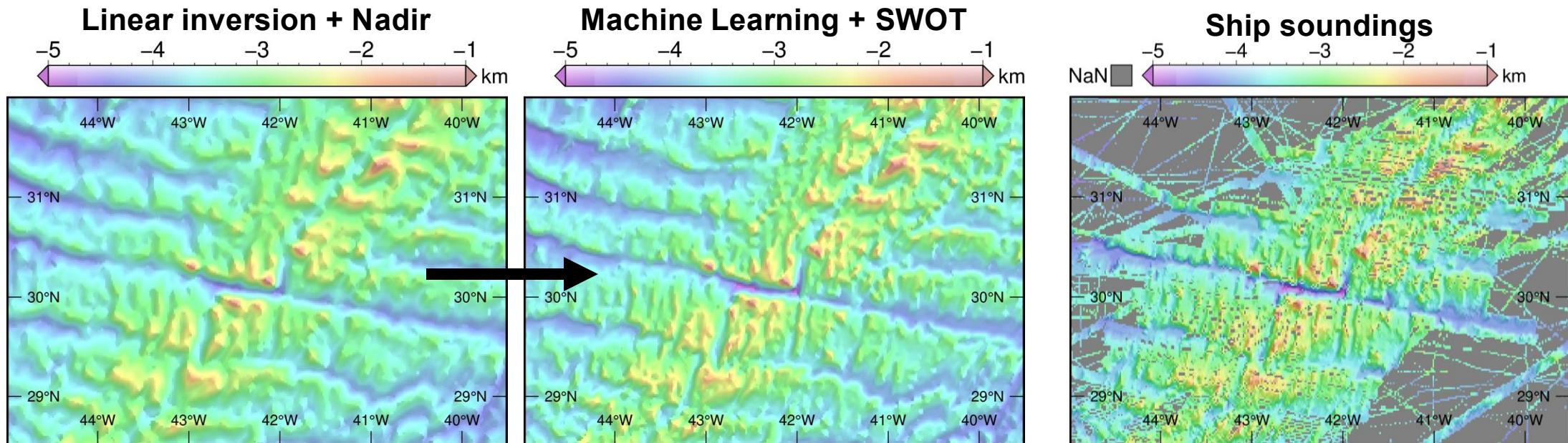
SWOT covers ~98% of the ocean



Yu, Y., Sandwell, D. T., & Dibarboure, G. (2024). Abyssal marine tectonics from the SWOT mission. *Science*, 386(6727), 1251–1256.

Optimal utilization of SWOT for bathymetric inversion

- **Goal:** Provide the best bathymetry map, **from SWOT data, utilizing Machine Learning**
- **Setup:** Five groups working with the same data, with five different methods
 - 2xDTU, SIO, NCU and NRL
- **Combination:** combine individual models in order to provide the optimal solution
- **Evaluation:** withheld data used to evaluate all five models



Optimal utilization of SWOT for bathymetric inversion

- **Goal:** Provide the best bathymetry map, **from SWOT data, utilizing Machine Learning**
- **Setup:** Five groups working with the same data, with five different methods
 - 2xDTU, SIO, NCU and NRL
- **Combination:** combine individual models in order to provide the optimal solution
- **Evaluation:** withheld data used to evaluate all five models

1. **DTU-DNN:** Deep Neural Network
2. **SIO-DNN:** Deep Neural Network
3. **NCU-DNN:** Deep Neural Network
4. **DTU-DKL:** Deep Kernel Learning
5. **NRL-CNN:** Convolutional Neural Network

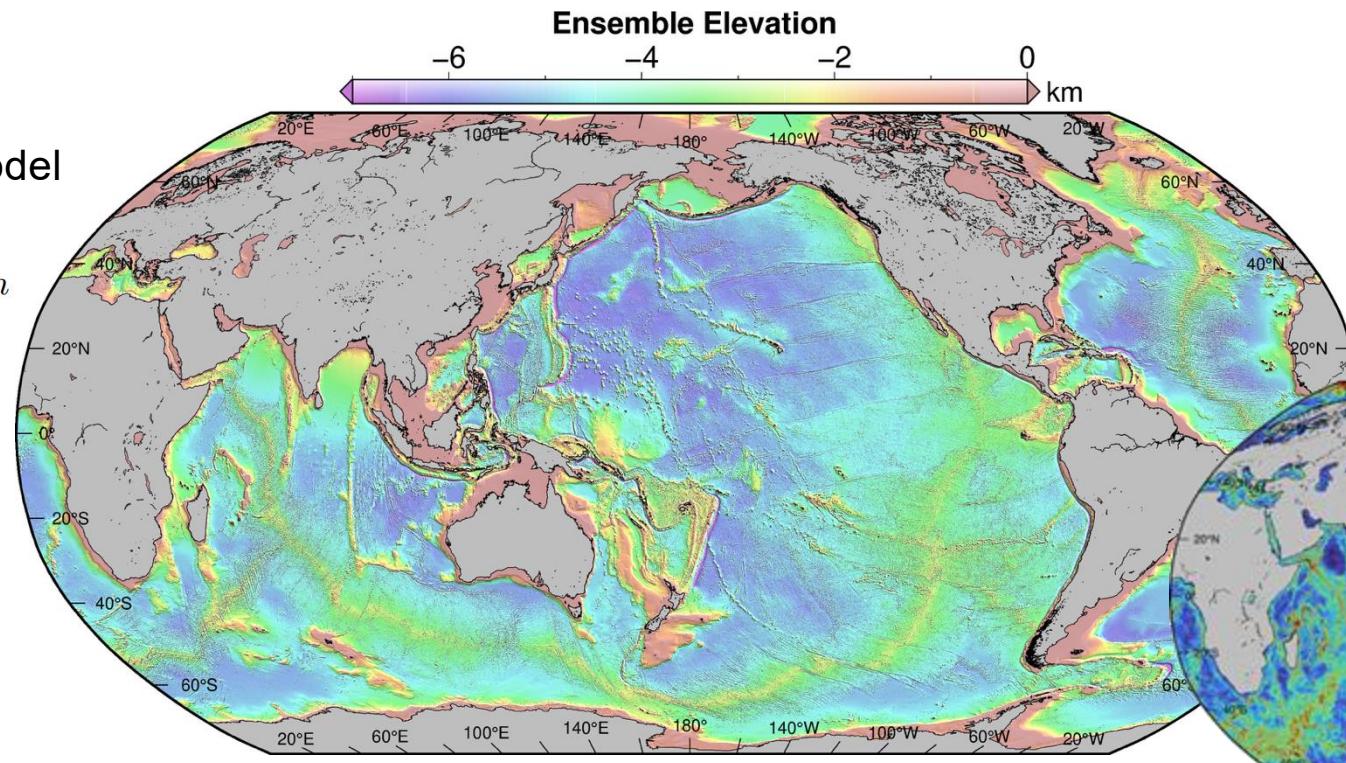
First talk of the session

Optimal utilization of SWOT for bathymetric inversion

- **Goal:** Provide the best bathymetry map, **from SWOT data, utilizing Machine Learning**
- **Setup:** Five groups working with the same data, with five different methods
 - 2xDTU, SIO, NCU and NRL
- **Combination:** combine individual models in order to provide the optimal solution
- **Evaluation:** withheld data used to evaluate all five models

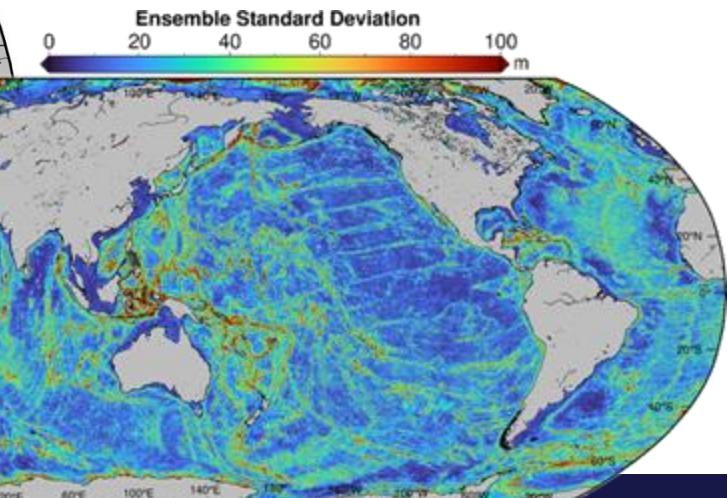
Simple ensemble model

$$\langle T \rangle = \frac{1}{N} \sum_n^N T_n$$



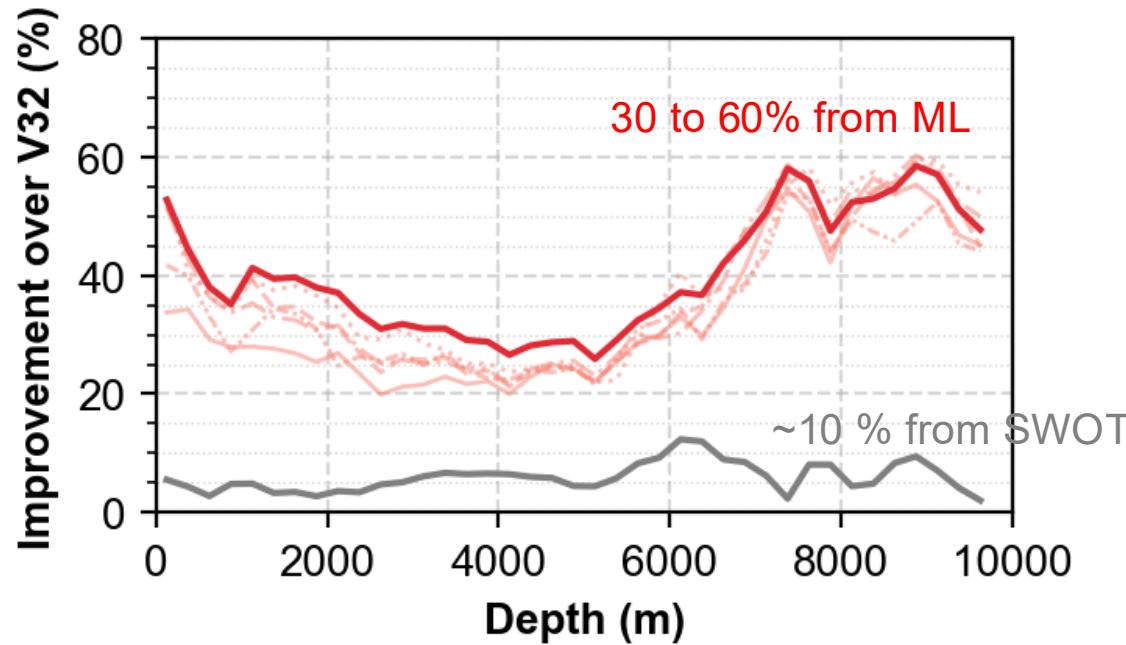
Model disagreements

$$\sigma_{\langle T \rangle}^2 = \frac{1}{N} \sum_n^N (T_n - \langle T \rangle)^2$$

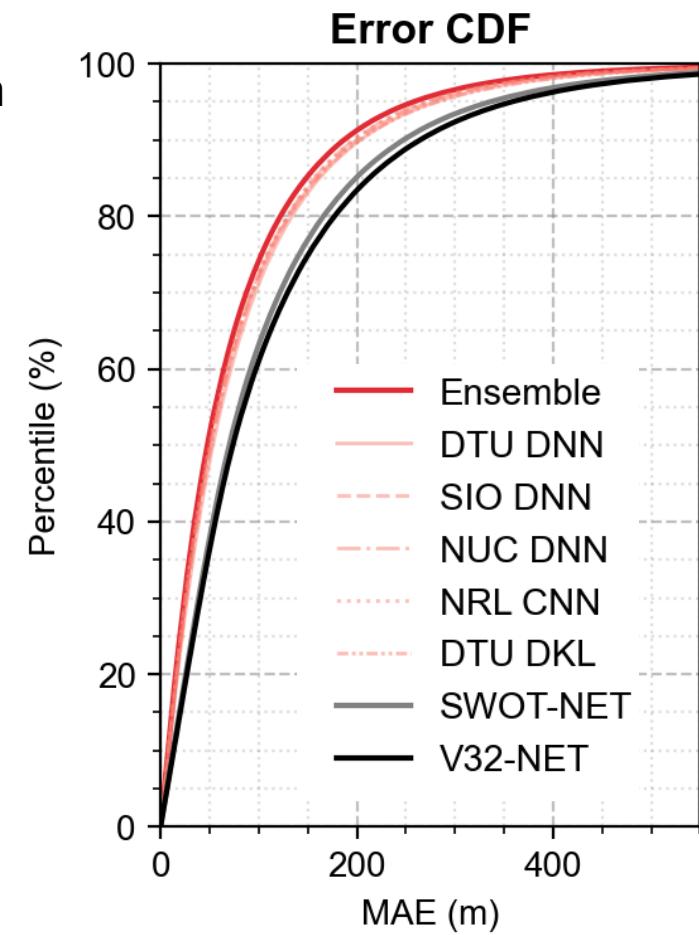


Optimal utilization of SWOT for bathymetric inversion

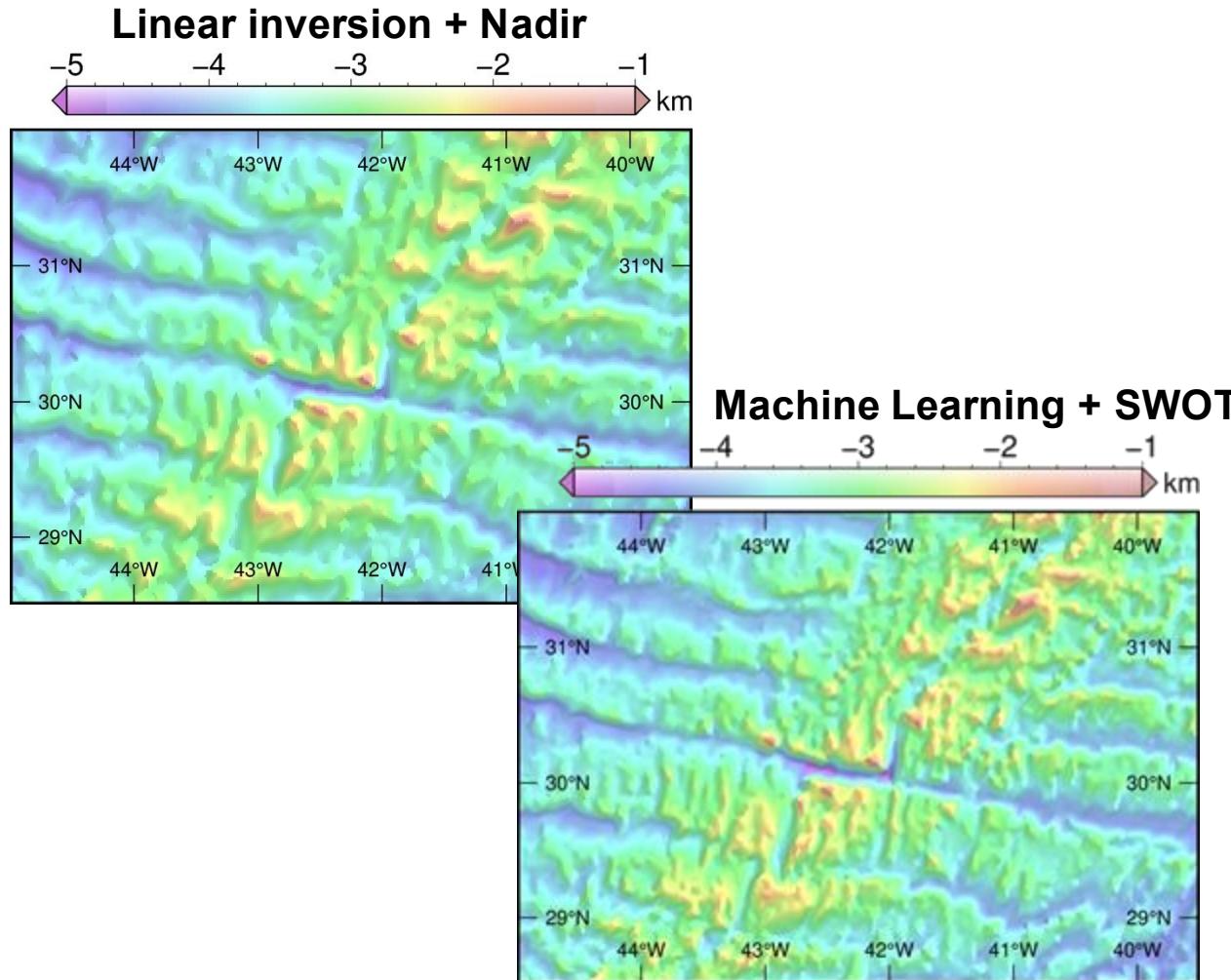
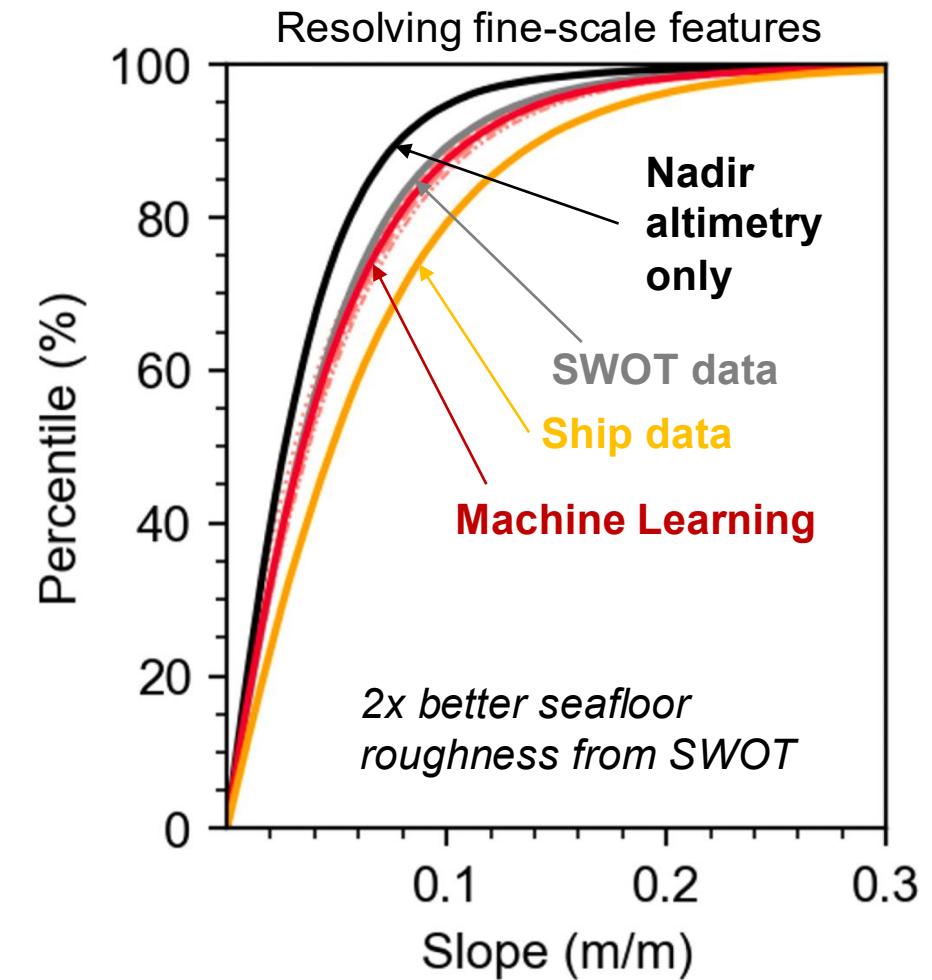
- **Goal:** Provide the best bathymetry map, **from SWOT data, utilizing Machine Learning**
- **Setup:** Five groups working with the same data, with five different methods
 - 2xDTU, SIO, NCU and NRL
- **Combination:** combine individual models in order to provide the optimal solution
- **Evaluation:** withheld data used to evaluate all five models



Global error
Bias: 14 m
Uncertainty: 130 m

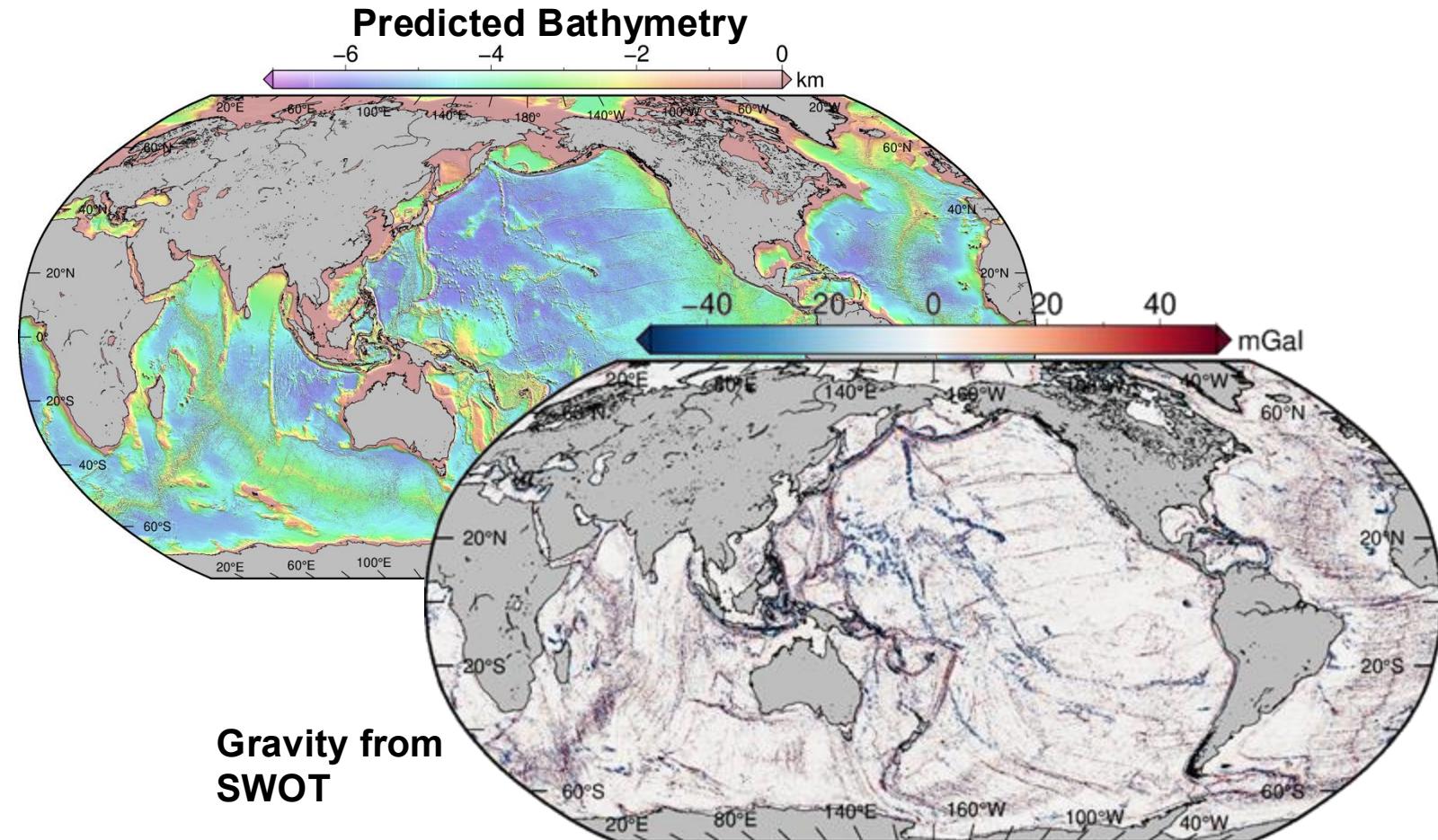
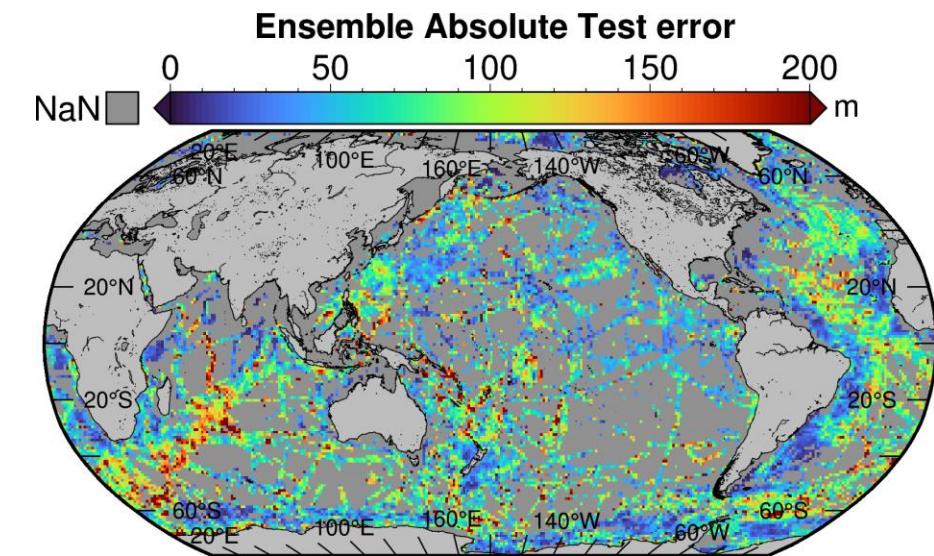


SWOT resolves small scale features



How SWOT can help identify areas of interest

Global dataset of gravity anomalies



Establish features that could influence prediction error

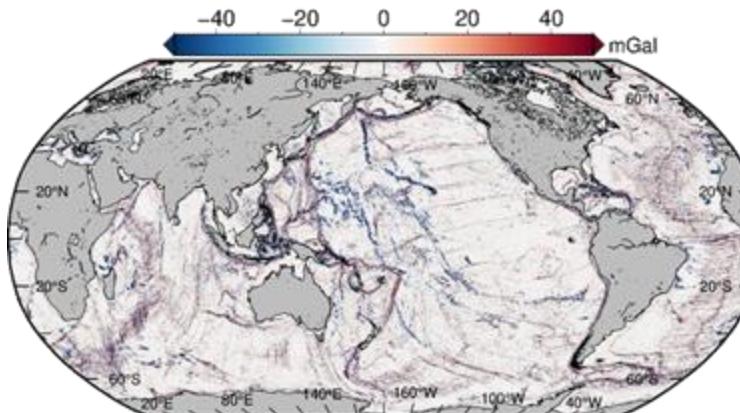
Residual analysis

Estimating errors in order to prioritize ship mapping

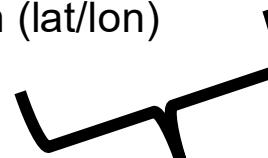
- Establish features that could **explain prediction error**

Trained-on features

Gravity + gravity derivatives

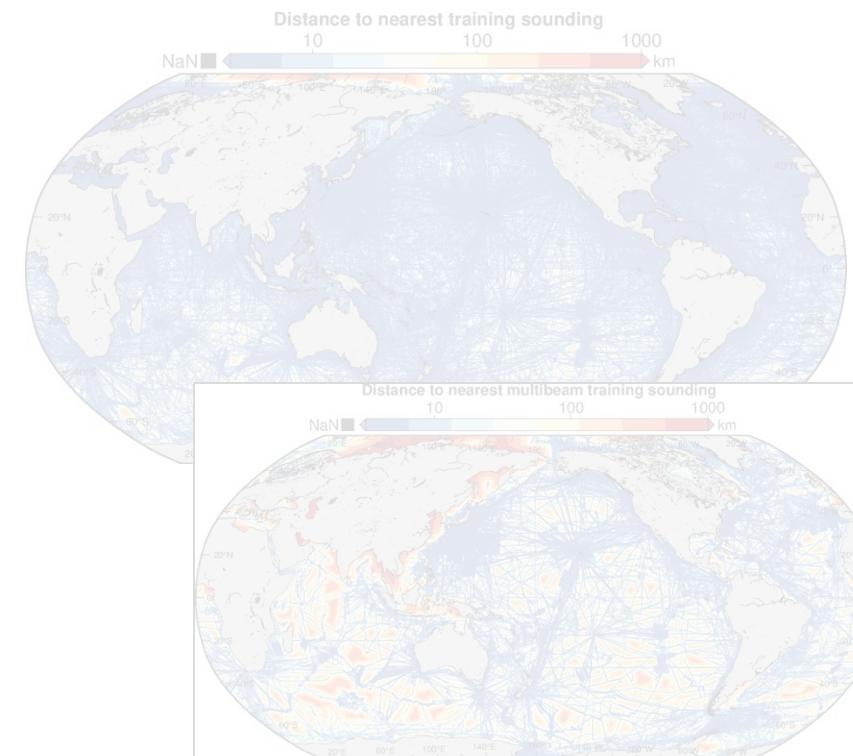


Location (lat/lon)
Depth



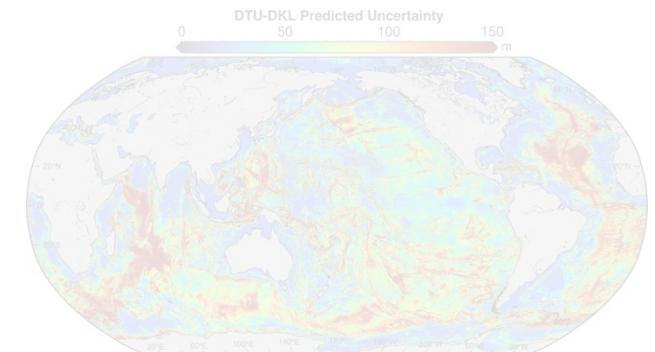
ML builds upon drawing from distributions: we compute out-of-distribution estimates from features

Aux features

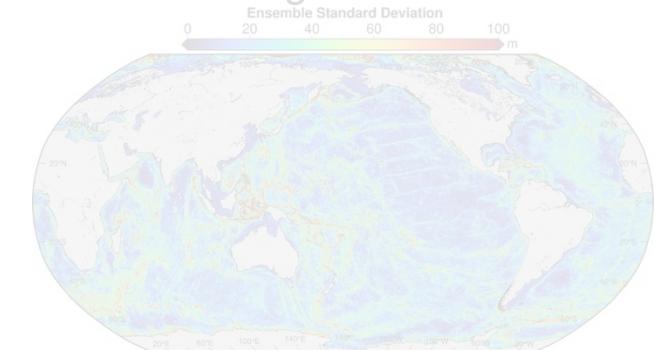


Trained features

Bayesian ML



Model disagreements



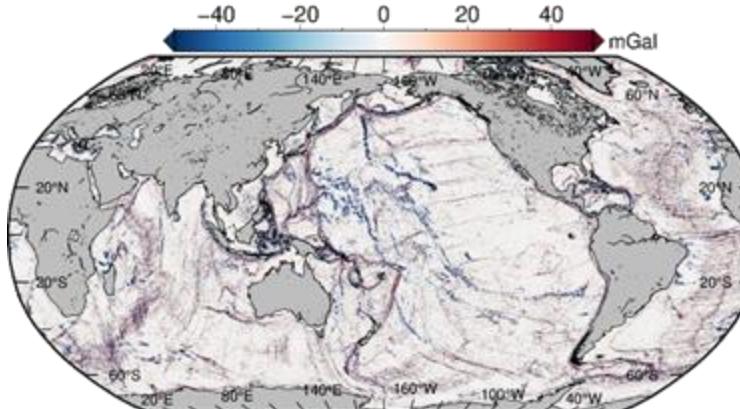
Residual analysis

Estimating errors in order to prioritize ship mapping

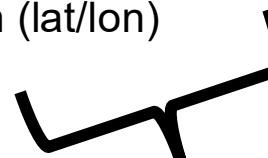
- Establish features that could **explain prediction error**

Trained-on features

Gravity + gravity derivatives

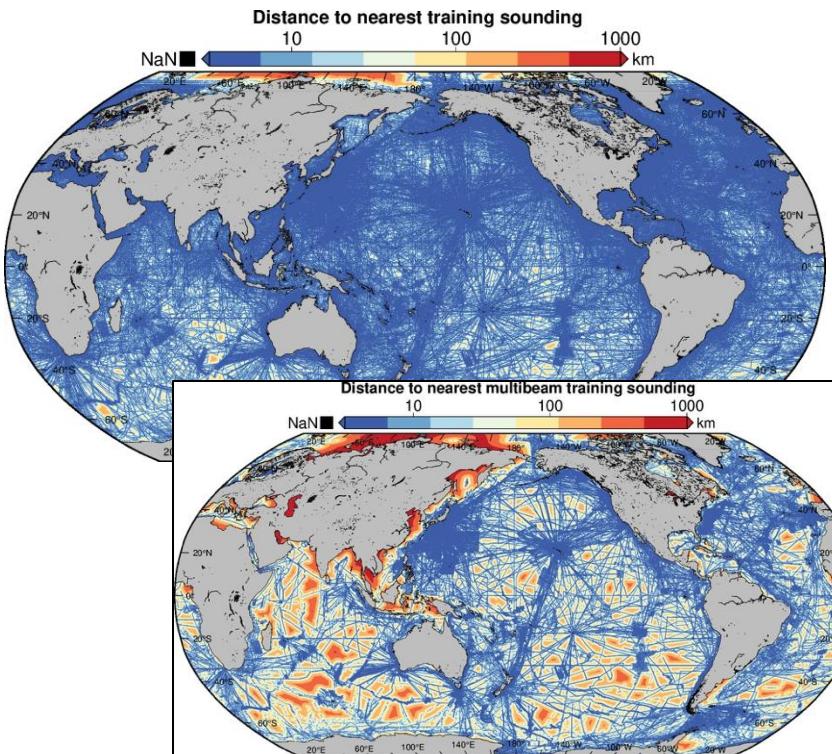


Location (lat/lon)
Depth



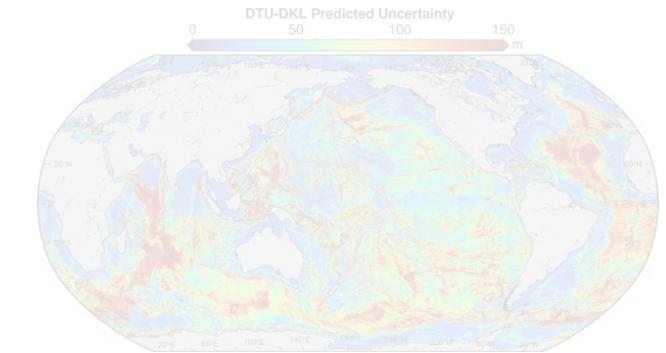
ML builds upon drawing from distributions: we compute out-of-distribution estimates from features

Aux features

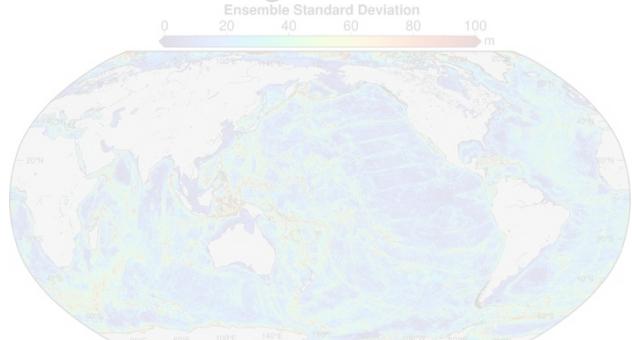


Trained features

Bayesian ML



Model disagreements



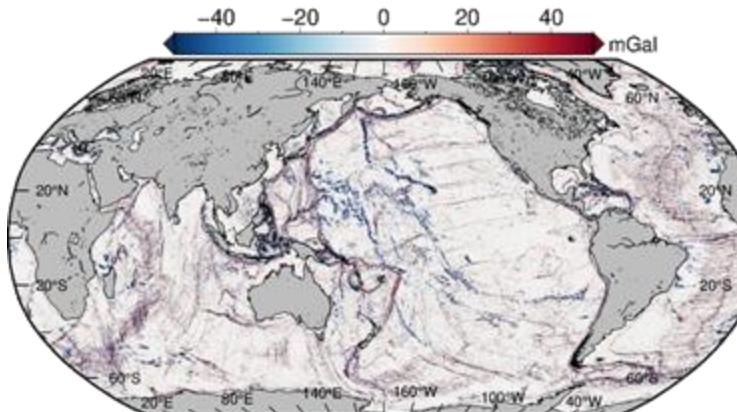
Residual analysis

Estimating errors in order to prioritize ship mapping

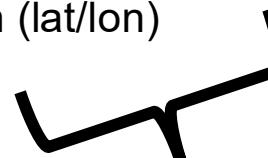
- Establish features that could **explain prediction error**

Trained-on features

Gravity + gravity derivatives

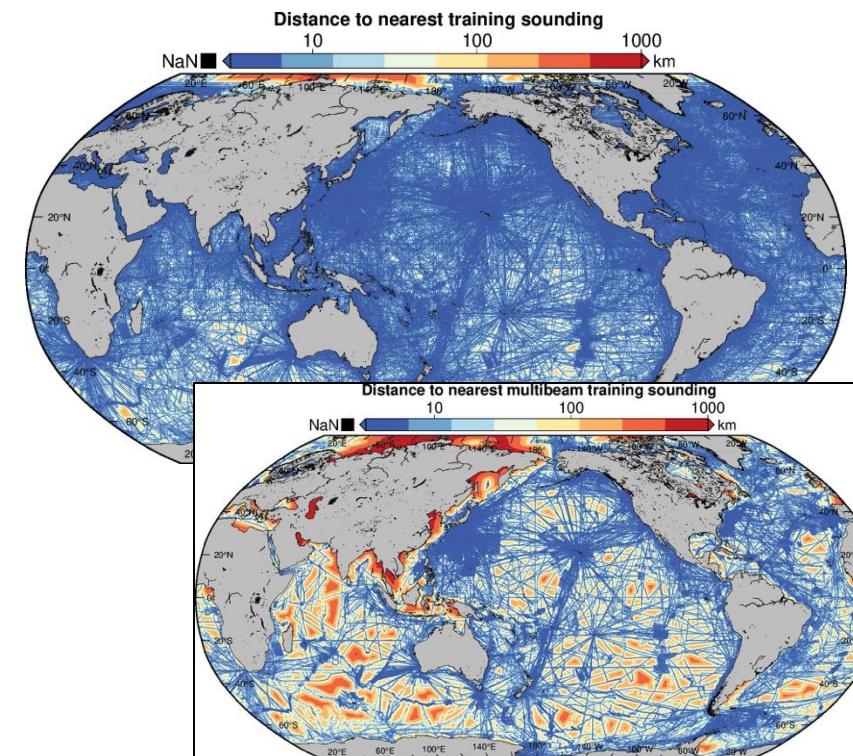


Location (lat/lon)
Depth



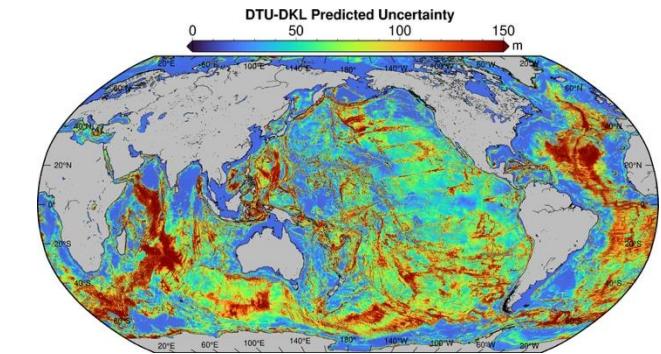
ML builds upon drawing from distributions: we compute out-of-distribution estimates from features

Aux features

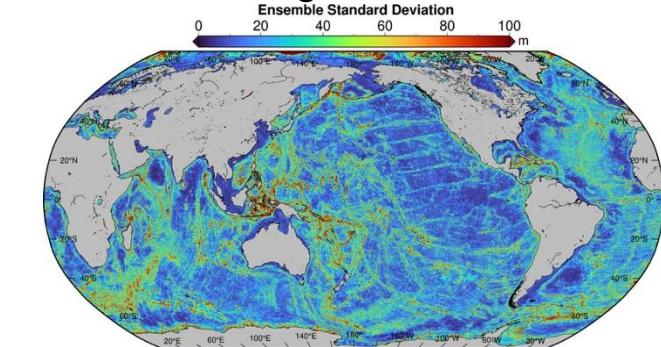


Trained features

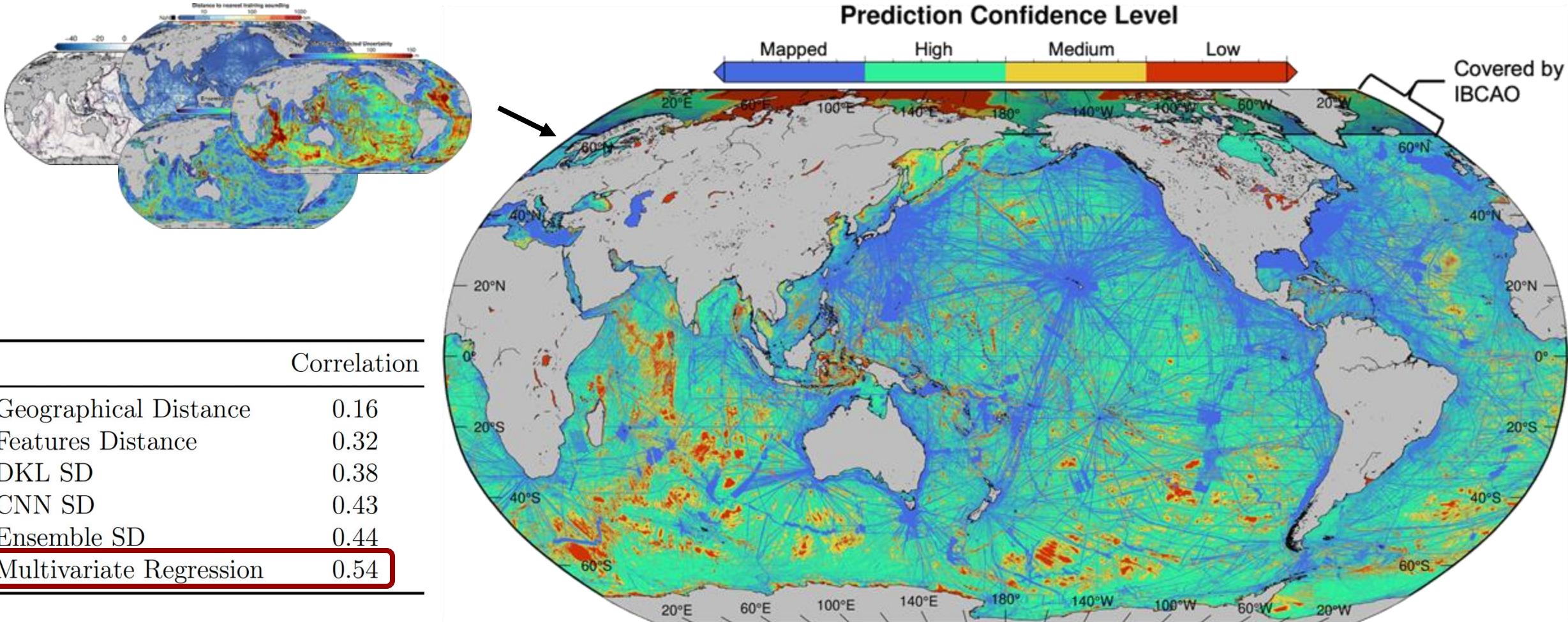
Bayesian ML



Model disagreements

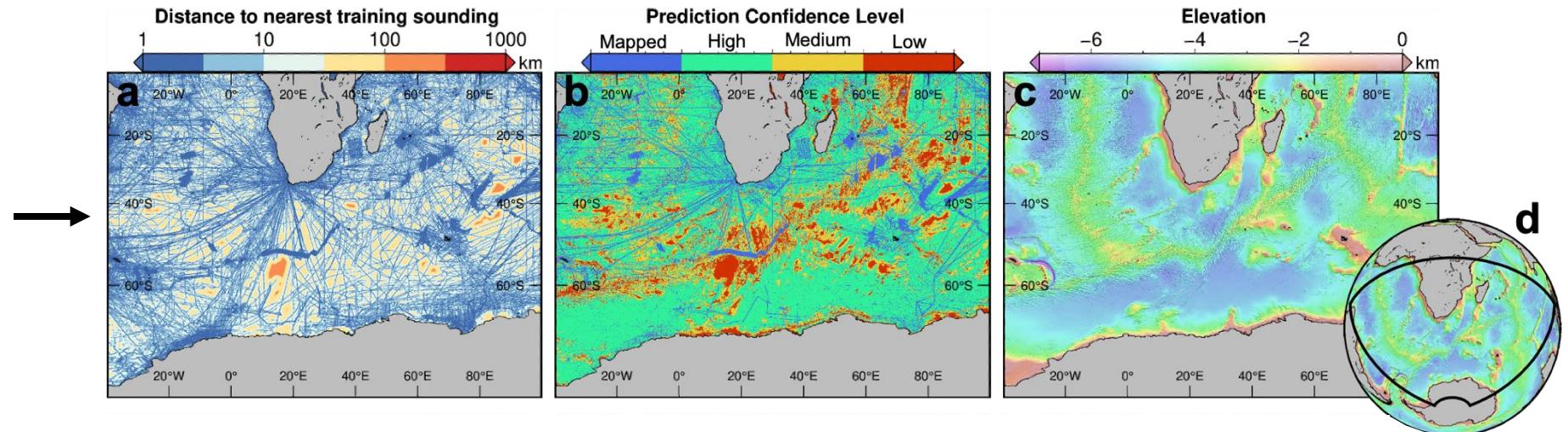


Combining prediction-features to estimate errors



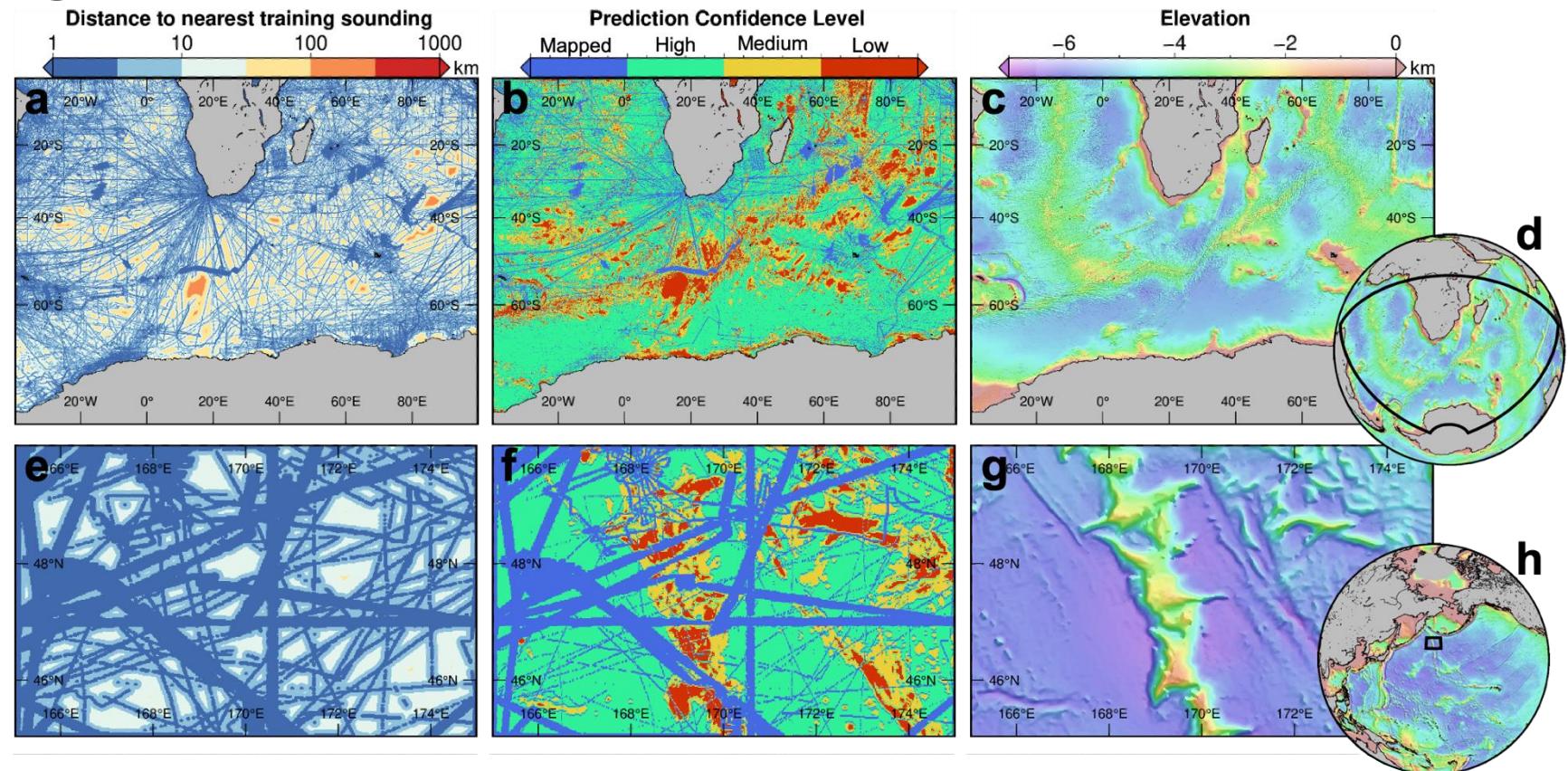
Inspecting features of interest

Higher uncertainty due to data gaps in the southern ocean



Inspecting features of interest

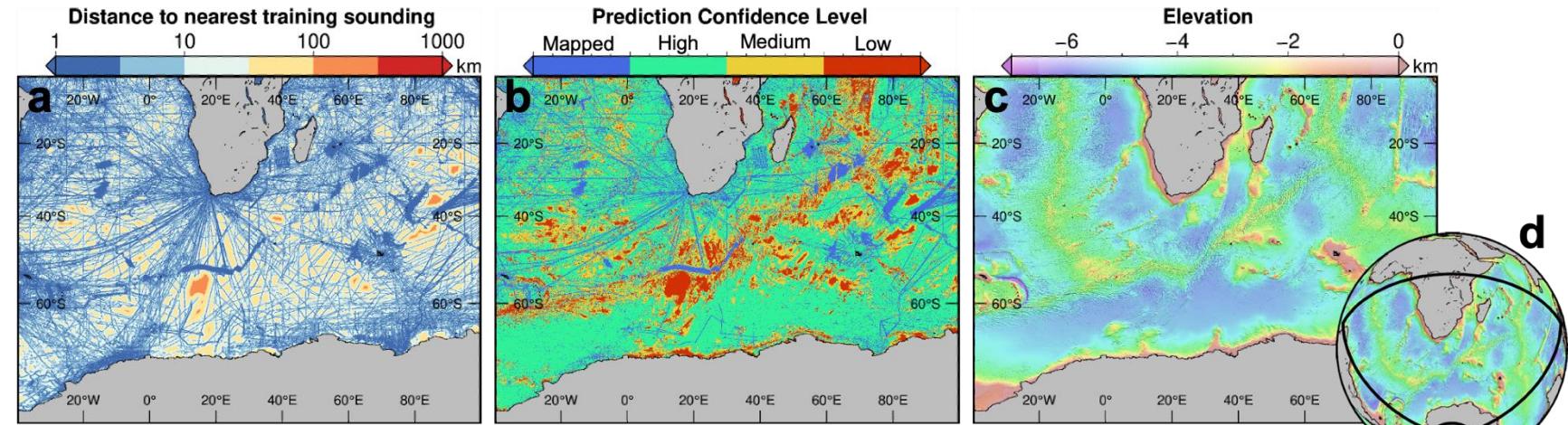
Higher uncertainty due to data gaps in the southern ocean



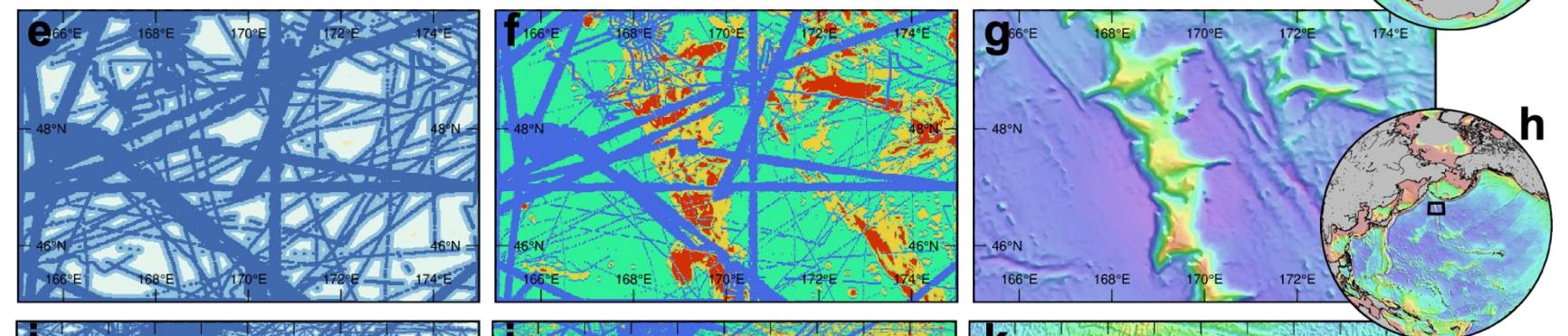
Large features causing large uncertainty next to swaths (emperor seamounts)

Inspecting features of interest

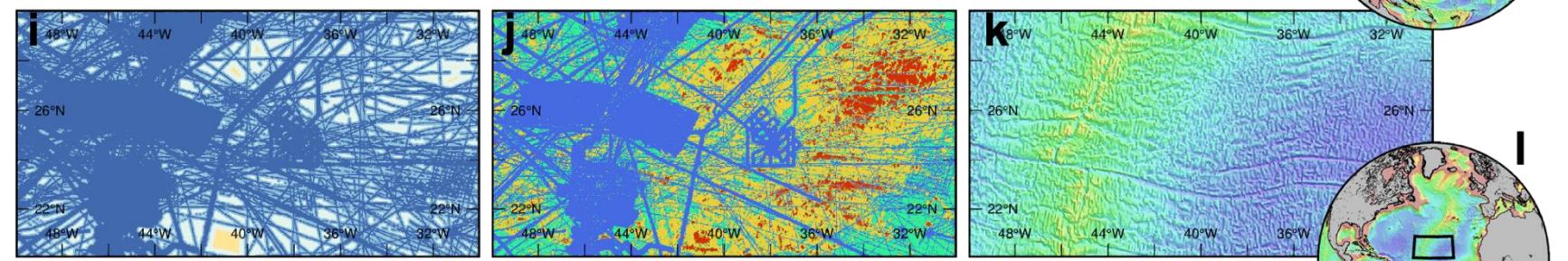
Higher uncertainty due to data gaps in the southern ocean



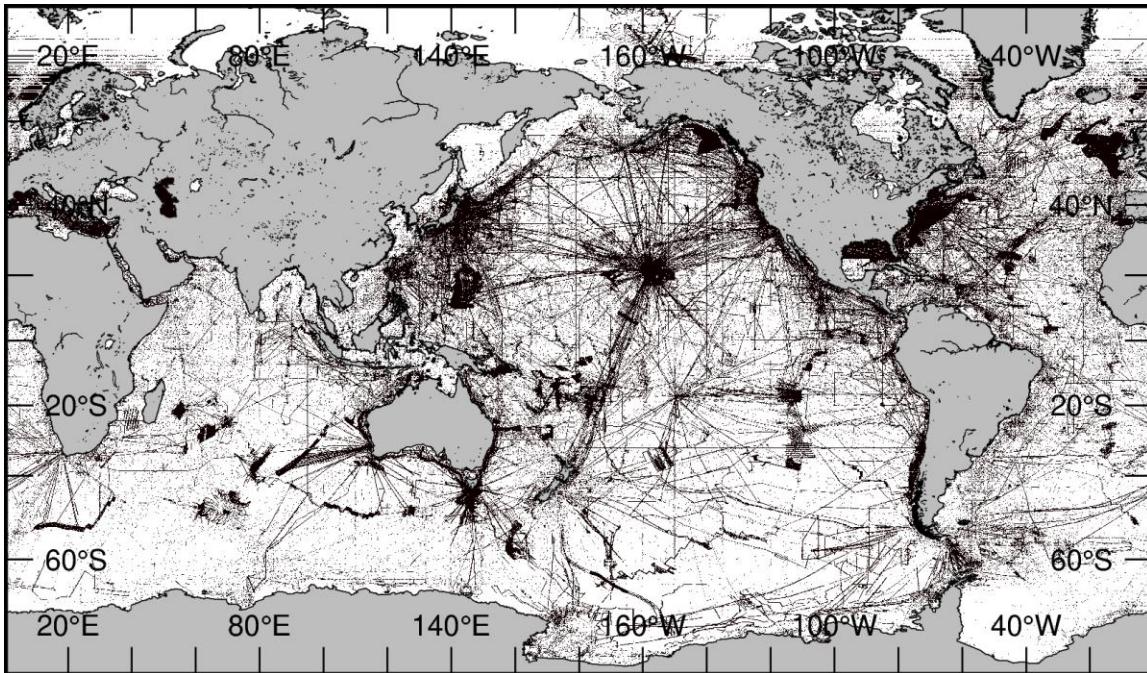
Large features causing large uncertainty next to swaths (emperor seamounts)



Large seafloor roughness causing overall higher uncertainty, while area of interest is mapped (Mid-ocean ridge)



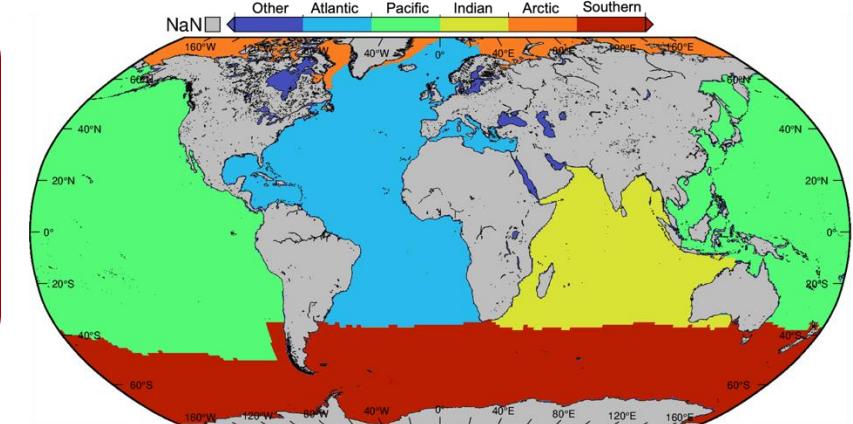
Reduction of “high-priority” areas by >50%



Percentage Cover	Mapped	High Confidence	Medium Confidence	Low Confidence
Global Oceans	23.8	56.2	12.3	7.6
Pacific Ocean	33.7	55.2	7.5	3.6
Indian Ocean	20.3	53.8	16.0	9.8
Atlantic Ocean	32.7	56.5	8.8	2.0
Southern Ocean	13.8	60.7	18.0	7.6
Arctic Ocean [†]	12.7	44.5	15.8	26.9

We can prioritise expensive ship-time

- Atlantic and Pacific are better mapped than Indian and Southern ocean
- We go from ~74% to ~7% need for priority ship mapping
- Medium confidence is needed as areas around features is necessary for overall mapping



Thank you for the attention!

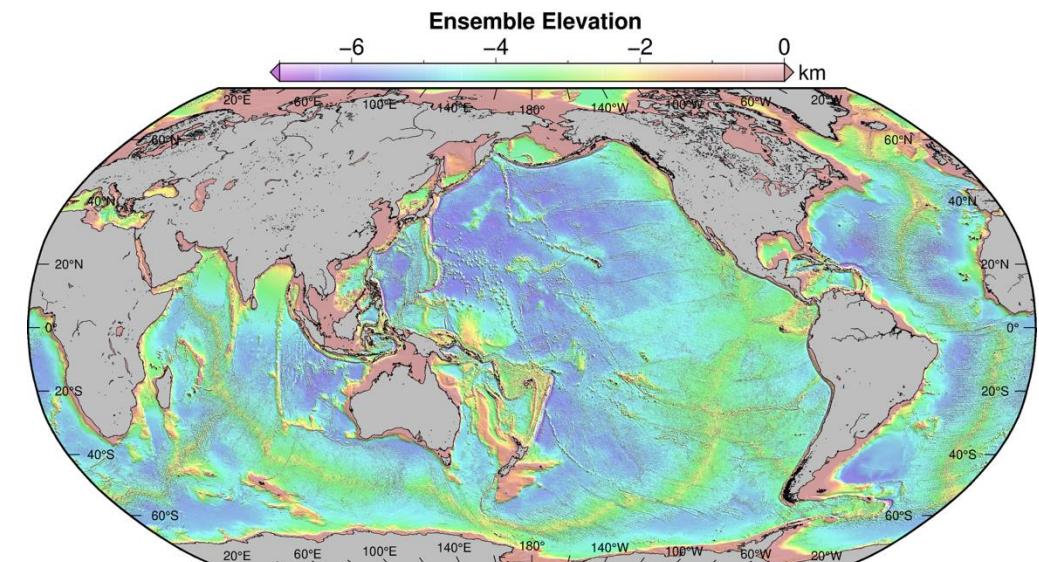
Questions?

Contact: Bjarke@space.dtu.dk

Conclusions

We can prioritise expensive ship-time

- Naive introduction of SWOT improves bathymetry estimates with ~10%
- Introduction of ML methods push this to **30-60% improvement**
- Inspection of features reduces needed "mapping time" from 74 years to 7 years
- Ensemble model **will be available** for use



Current outlook on bathymetry prediction

And the impact of SWOT on marine geodesy

As bathymetry prediction reaches its limit, the potential for "full" physical inversion increases

- Physics based ML method

SWOT

Gravity anomaly

$$\frac{\Delta G(\mathbf{k})}{T(\mathbf{k})} = 2\pi\gamma(\rho_c - \rho_w) e^{-2\pi|\mathbf{k}|s}$$

Seafloor Topography

Ships / ML

Prop. Elastic plate thickness

$$\left\{ 1 - \left[1 + \frac{D(2\pi|\mathbf{k}|)^4}{g(\rho_m - \rho_c)} \right]^{-1} e^{-2\pi|\mathbf{k}|c} \right\}$$

Mantle density

Crustal density

Crustal thickness

