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Lakes are sentinels, reqgulators and integrators of climate change (Williamson et al;, 2009)
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Some key variables: water level, water temperature, ice over lakes, water color ...

Lakes and models: some examples, how lakes are linked to climate changes?

a constellation of satellites in 2021 for multi-variable survey of lakes: towards integrated approach

017?




Definition of ECVs: 79 lakes were selected by GCOS organisation in a first step to caracterise Climate Changes related to lakes

Sentinel of CC 5 types of ECVs have been defined

Are there measurable from remote sensing?
What are the climate issues adressed?

* Water cycle

* GhGcycle

* Biophysical processes

Daily/Weekly/Monthly water level changes

Daily/Weekly/Monthly water extent changes =)
Daily/Weekly/Monthly water temperature

Date of Freez-up and break-up of lake ice, ice extent & depth
Water color

2/3 of them are currently monitored with the constellation of nadir altimeters
The totality in 2020 with the SWOT constellation but only.level and area
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Sentinel of CC
Response of Lake Water Temperature to climate (1/2)
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Lakes are warming at a global average of 0.34 C per decade

there are lakes warming up rapidly adjacent to lakes that might even be cooling!
* Are model like Flake able to reconstruct these behavior?
 Are there feedbacks on climate itself?



Sentinel of CC
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The temperature structure is one
of the most fundamental
characteristics of a lake

Trends may be observed only
during winter

Courtesy of Woolway
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Response of Lake ice to climate (1/2)
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Freeze-up/break-up, (ice duration) are robust
indicators of climate variability and changes

lce cover extent/concentration has an important
impact of lake-atmosphere interactions

Manual measurements of ice dates
(freeze-up/break-up) and ice thickness
have drastically decreased at many
national networks over the last three
decades



Response of Lake ice to climate (2/2)

Sentinel of CC 20 years of SAR data on ERS1/2, S1A/B, Radarsat

22% of diminution of grounded Floating ice constellation (April; 1992 to 2011)

lake ice over the last 20 years mmmm Grounded ice 400 lakes studies in the Barrow region in Alaska
----- Mean grounded ice fraction
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This result suggests that the general diminution of ground ice could be due to a general Courtesy of C. Duguay
diminution of depth’s ice but:

It does not take into account yearly dynamic of lake level when the ice is formed in winter.

Definitive conclusion on impact of global warming is therefore not possible

SO S S

Ground cover of the classical nadir altimeters does not allow to determine the lake level of
each of the small lakes in the area of study, and this is not possible to obtain this information



Lakes as Regulator of climate change (1/2)

1- Lakes receive from the surface runoff, store and re-emit GhG to the atmosphere depending on biomass quantities in their

vicinity

2- Lakes may change the regional climate through evaporation and cloud formation

Shrinkage of the Aral Sea reinforced the gradient of temperature between
winter and summer and the intensity of wind (Micklin 1980)

Permafrost thawing due to climate change enhanced the global warming in
the boreal regions through the emission of GhG in shallow lakes

3- The stock of carbon into lake sediments is much higher than the total
contained in the ocean (Tranvik et al., 2009)

4- Shrinkage due to warming or rainfall decrease amplifies the carbon re-émission

DIC: Disselved Inorganic Carbon
DOC: Dissolved.Organic Carbon

POC: Particulate Organic Carbon
TOC:-Total Organic Carbon

atmospheric carbon

direct uptake

carbon
B Po0l

sediment pool



Lakes as Regulator of climate change (2/2)

Simulation by Flake of the impact of lakes on the air température and précipitations in Europe

Temperature changes by season

Rouse et al., 2005

2 simulated cases : lakes taken into account and lakes
erased from a 30 years simulation

Increasing air temperature in summer, autumn and winter up to 1/1.5°C
Deep lakes like the Ladoga provoke a slight cooling in spring

It also has an impact on rainfall but in a lower amplitude

There is a high sensitiVity of the Flake model to the depfh of lake,
often unknown for small lakes

Impact also of ice duration over the lakes and of water temperature.

Can we assimilate satellite data on those parameters to.improve the

models:outputs and conseguently the'climate change prediction?



Impact of climate change on the water cycle

av

dt [R+P+Gz] [D+E+G0]

Lake in equilibrium: ALE _ (ERP)
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When changes occurs on the hydrological parameters of a lake, it always tends towards a new equilibrium



For small Te the extent area variations are sensitive to small variation of aridity
100 For high te the level variations are sensitive to small variation of aridity
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Ayakkum, 24 years

Large / small Aral, 23 / 17 years
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Large / Small Tchad, 4 / 1 years

Tangra-Yumco , 522 years
Nam-co, 160 years

Zigetang-co, 134 years Mason et al., 1994, Cretaux et al., 2016



Why do we need a satellite constellation? Models?
FLAKE, VIC (Arclake, OLCI, ERA)

av lac r \
Lake Water Balance — %* ‘\Pl(t) — El(t)) HGIHR =D

TN
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Outcome from the workshop on lakes, remote sensing, and climate (1/3)

The quantity of CO2 stored in a lake is modified by the duration of ice

period in winter (Catalan et al., 2009)

A) Arctic lake, Alaska B) Boreal lake in non-carbonate bedrock, Sweden
CO,; 20% L, 42%
H H . . downstream export downstrmm export
The salt lakes contribute two times more to the emission of CO2 than - roces o
freshwater lakes (Duarte et al., 2008) m (DIC 39%, DOC 37%, (IOLW DIC 5%)
m l POC 2%) DIC 34%
sediment storage 2% sediment slnr age 19%
S h d I IOW & Sma I I Ia kes dare more a Ctlve I n G h G re-em ISS I on C) Open basin hard-water lake, Saskatchewan, Canada D) Closed lake basin north-temperate lake, Minnesota
. CO, influx 2% (3()2 2%
. .. . . DIC 77%\# downstream export DIC 96% ﬁ(,H bmundn ater export
Studying lakes water balance and their interaction with CC depends on | >

the morphology of lakes oc g T eI o /”’

POC 1%
Due to the high role of lakes as source and sink of CO2 & CH4, & the
E) Agricultural reservoir, Ohio F) Amazon floodplain lake, Brazil

sediment storage 30% sedlmem storage 11%
sensitivity to the_lr geographycal -dIStrIbutIOI’l (numk?er, type of surrounding | i ﬁ%%
ecosystem), their morphology (size, depth) and their type (salt/fresh) DIC 85% dowwexz’m

downstream export [TOC 85%

::} 66%
P /ﬂ'—‘l (DIC 55%, DOC 6%, DI, K—‘D v 1o
. . . . POC 5%
=> their is a fundamental need to not only defining ECVs and POC 10% ) Rl e

H . sediment storage 33% POC 4% sediment storage 4%
system (Remote Sensing, In situ) to measure them, and model (Flake, Sl =
GCM) to assimilate them but also to develop:

Tranvik et al., 2009

An inventory of lakes under different criteria and platforms to store and release these fundamental caracteristics
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Outcome from the workshop on lakes, remote sensing, and climate (3/3)

SWOT in 2021 will make a survey for the first time of lakes and reservoirs
globally but only for 3 variables:

Height, area and storage changes

In 2021 many new sensors will allow measuring other variables in an
unprecendent accuracy and exhaustivity:

Water temperature, water color, biomass, precipitation, gravity field, soil
moisture, high resolution mapping

We examined what are the current situation in lake studies from the
linkage with climate change’s point of view, what are the questions to
adress and what are the first suggestions to propose?



Some key questions

What are the most needed satellite data sets in limnology, are current sensors
adequate, do we need new sensors?

How to organize international community of remote sensing data providers to
make data useful for lakes more accessible to the science communities, and what
recommandations for short term funding & long-term observation plans related
to lakes?

Can we understand climate change impacts on lake ice, lake temperature, lake
hydrology, and lake biogeochemistry independently, or are changes only
understandable through coupled analysis, with integrated data analysis?

Is there a need to revise the definition of the ECVs defined by GCOS?

Is there a joint field (including airborne) & remote sensing campaign that we
could plan that would address key questions related to lakes?



Some key recommandation

It is needed to develop global ecological Lake Network with in situ instrumentation on a
high range of variables to measure, for:

e satellite data calibration and validation
e assimilation into models
* comprehension of the long term changes in a multi variable point of view

There is a lack of global classification of lakes under different criteria (morphological,
climatic, physical, biogeochemical).

Set up a network of lakes with adequate and pertinent classification, is therefore a
necessity together with an integrated database of inter-calibrated various climate records

Constitute a working group on Lakes, Remote Sensing and Climate with
regular worshop and prepare a white paper for the end of the year
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