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Discharge estimation from 1D St-Venant Bathymetry & 0.5D model Summary & forthcoming studies

Discharge estimation from the 1D St-Venant model
The inverse model features

� Direct model : 1D St-Venant in (A,Q) variables (FV or FD scheme).

Effective wet-area : trapezium superimposition. Width of middle trapeziums. Simulator reaches.

� Variational Data Assimilation. Adjoint code fully automatic for the user.
DassFlow software [P. Brisset et al.] [J.Monnier et al.]. Stochastic tools possible by interfacing with OpenTurns.

� Identified parameters are :
- Qin(t) inflow discharge ; K (h) varying Strickler coeff.
- Zb effective topography elevation.

and potentially Z (Q) rating curve. Default outflow b.c. : normal depth.
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An a-priori analysis
before the identification - model calibration

� Simulator like data, model outputs with Gaussian noise.
Reaches @ 200 m (RiverObs), noise σ ∼ 25 cm (Garonne river, ∼ 80 km upstream portion).

Cal-Val repeat : 1 day with 377 reaches.
SWOT repeat ∼10 days with 25 reaches : not presented today, [Brisset et al.] in review.

� ”Identifiability maps” = model output read in the (x , t)-plane at obs times

Lines = wave propagation. Rectangle colors = misfit wrt equilibrium
= Manning’s law residual.

(a) Cal-Val 1 day repeat (b) The corresponding com-

plete hydrograph

⇒ Inference of reliable Qin(t) in the vicinity of the observation time,

Identifiability time window sizes ≈
L

(ū + c̄)
≈ day time scale
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An a-priori analysis
before the identification - model calibration

� ”Identifiability maps” = model output read in the (x , t)-plane at obs times

Lines = wave propagation. Rectangle colors = misfit wrt equilibrium
= Manning’s law residual.

(c) SWOT (∼10 days, simulator swaths) (d) The corresponding com-

plete hydrograph

⇒ Inference of reliable Qin(t) in the vicinity of the observation time,

Identifiability time window sizes ≈
L

(ū + c̄)
≈ day time scale.

[P. Brisset et al.].
This is a rough analysis however confirmed by the numerical experiments.
VDA process is hopefully more complex and richer since least-square fitting in space -
time and propagating of all the non-linear waves.
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Discharge estimation & Model calibration
Garonne river (upstream). Cal-Val scenario.

VDA processes ∼ 15− 50 iterations of minimization. CPU time ∼ 10− 100mn on PC.

(e) Identified discharge Qin(t) Cal-Val SWOT data only, with

outflow rating curve given.

(f) Optimisation ite-
rations : friction coeff.
Computations : K. Larnier

� Two scenari related to the bathymetry :

Case 1) No prior information. 1st guess : Manning’s law (Q̄(0) = K̄ (0) · Φ(Z
(0)
b

)) ⇒ Z
(0)
b .

Case 2) One (1) in-situ depth value bref in the river section : low-Froude law ⇒ Z
(0)
b .

Case 1st guess required 1st guess (Q̄(0), K̄ (0)) RMSE A
(0)
0 RMSE Qoptim(x , t)

1) Qin(t), K , Zb (30%, 30%) error 40% 9.8%
2) Qin(t), K (·, 30%) error 8.5% 6.6%
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On the bathymetry identification
From the low-Froude model (0.5D)

� Case 1) While identifying the triplet (Qin(t),K(h),Zb(x)), without prior
information the VDA process adjusts Zb(x) but not necessarily in the right way...

→ Equifinality issue on the pair (K ,Zb).
� How to infer separately Zb ?
A solution : the low-Froude relation (0.5D) with K constant + 1 ref. value bref .

(g) Lowest wetted section A0 : infered va-

lue from the Low Froude eqn + 1 ref. value

⇒ RMSE ∼8.4%

(h) A0 inferred value from the Manning

law with 30% errors on Q and K ⇒ RMSE

∼39.9%. (Computations K. Larnier)

� Adopted strategy if one in-situ depth value bref is available in the section :
1) Infer the effective low-Froude bathymetry from the 0.5D model.
2) Perform the 1D VDA process to infer the pair (Qin(t),K(h)).
⇒ The most accurate pair (K(h), Zb) (compared to those obtained if identifying the triplet).
⇒ A dynamic predictive model instead of a descriptive one only. [In prep.]
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Summary

� 1D St-Venant model & VDA provide a good estimation of river portion discharges
at ∼ the ”observation day”, in ∼ an hour of computations - analyses.

Errors on Q(x, t) at the observation times on the present example :
Cal-Val (1 day repeat) ∼ 8− 10%, SWOT (∼10 days partial repeat) ∼ 15− 20%.

Synthetic data with noise, simulator scenari.

� The consequences of the equifinality issue on (K ,Zb) remains to be investigated
more into details (from databases).

� The combination with regional databases can provide good bathymetry estimations,
(in the sections with usable data) hence providing more accurate predictive models.

NB. The low complexity physical-based ”discharge algorithms” without additional information (eg. GaMo,

MetroMan etc) do not solve the equifinality issue.

� The low complexity inverse algorithms (AMHG, GaMo, MetroMan, MFG etc) are
complementary. Moreover they can provide (near) real-time estimations (lower

complexity...).
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On-going & forthcoming studies
Forthcoming studies :

I Uncertainty Quantification within the model chain.

I Pursue the enrichment of our VDA algorithms to heterogeneous - multi-sources
data and to the complete multi-dimensional - multi-scale modelling chain.

”DassFlow model” is based on the present hierarchical approach 0.5D-1D, including
the 2D VDA model (not presented today).
Code sources are open to the community.

On-going studies :

I Combination of Regional Databases with the low complexity / 0.5D physical
models :

Low-Froude → Bathymetry
Manning law → Discharge

⇒ See next part presented by K. Larnier.
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On-going & forthcoming studies

⇒ See next part presented by K. Larnier.
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Discharge estimation & Model calibration
Garonne river (upstream). Cal-Val scenario.

VDA processes ∼ 15− 50 iterations of minimization. CPU time ∼ 10− 100mn on PC.

(i) Identified discharge Qin(t) Cal-Val SWOT data only, with

outflow rating curve given.

(j) Optimisation itera-
tions : friction coeff.
Computations : K. Larnier

� Two scenari related to the bathymetry :

Case 1) No prior information. 1st guess : Manning’s law (Q̄(0) = K̄ (0) · Φ(Z
(0)
b

)) ⇒ Z
(0)
b .

Case 2) One (1) in-situ depth value bref in the river section : low-Froude law ⇒ Z
(0)
b .

Case 1st guess required 1st guess (Q̄(0), K̄ (0)) RMSE A
(0)
0 RMSE Qoptim(x , t)

1) Qin(t), K , Zb (30%, 30%) error 40% 9.8%
2) Qin(t), K (·, 30%) error 8.5% 6.6%
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Numerical results and ancillary 
databases

● Primary discharge algorithms tests (PEPSI 
dataset)

● Inversions with VDA and full Saint Venant
● Work on ancillary databases



  

Discharge algorithm
● Low complexity (Manning) equation

– A0 assumed known

– Computation of K using reference point(s):

– K constant and uniform

Q(xref , tref )=K (A0+∂ A obs(xref , tref ))
(5 /3) .W obs (xref , tref )

(−2/3) .√Sobs(xref , t ref )

Q(xref , t)=K ( A0+∂ A obs(xref , t))
(5 /3) .W obs(xref , t)

(−2/3) .√Sobs(xref , t)



  

Discharge algorithm
● Low complexity (Manning) equation

K=22.8

rRMSE = 20%

K=35.6

rRMSE = 20%



  

Bathymetry inference
● Low Froude model



  

Bathymetry inference
● Low Froude model

– PEPSI rivers

Good accuracy using a combination of Low Froude + in-situ discharge value(s)
Primary equations, real-time computation



  

Variational Data Assimilation
● DassFlow 1D – Twin Experiment 

–

Unknowns: (Q,K,B)
1st guess on B: Manning

Unknowns: (Q,K)
1st guess on B: Low Froude

Garonne Upstream
CAL/VAL-like

rRMSE = 18.1% rRMSE = 2.2%



  

Variational Data Assimilation
● DassFlow 1D – Twin Experiment 

Unknowns: (Q,K,B)
1st guess on B: Manning

Unknowns: (Q,K)
1st guess on B: Low FroudePo River

CAL/VAL-like

Equifinality K,B
High accuracy using Low Froude bathymetry, equifinality tackled

rRMSE = 12.2% rRMSE = 3.6%



  

Validation
● VDA + rerun low-complexity

– Model outputs (HEC-RAS) + 30 cm error on Z

Better accuracy with complete toolchain
Low Froude bathymetry + VDA (Q,K) + discharge algorithm

Unknowns: (Q,K)
1st guess on B: Low Froude

Unknowns: (Q)
K from VDA
1st guess on B: Low Froude

60 days

+30days

Po River
CAL/VAL-

like

rRMSE = 9.7%

rRMSE = 12.7%



  

Ancillary databases
● Key idea: develop rating curve

● In-situ databases
● Altimetry data

● Inverse discharge algorithm to infer parameters
● Manning/Strickler
● Bathymetry

GRDC stations with daily data HYDRoSWOT (USGS) stations



  High accuracy using in-situ flux measurements
Towards databases over Europe, Amazon, …

Ancillary databases
● HYDRoSWOT (USGS)

– Rating curve + low-complexity inversions

– Uniform manning



Insight on physical river networks segmentation and 
hydraulic controls
(A. S. Montazem phD (LEGOS – ICUBE), S. Calmant, P. A. Garambois)

• General context : 

– Study of continental hydrosystems from multisource data (satellites + in situ)

– Discretization required for signal processing, hydrodynamic modeling, data 
assimilation, data diffusion

• Problematics: How to represent and discretize river networks 
effectively at the global scale for discharge estimation with SWOT 
data?

– Spatio-temporal variabilities of: hydrological forcing, free surface flows, 
River morphology, 

Tanana River near Fairbanks, Alaska

SWOT pixel cloud

Garonne river 

(LEGOS-IMT)

Error
(m)

Rio Xingu, Brasil

Biancamaria et al. 2016



Hydraulic visibility from altimetric observations

(Garambois, Calmant et al. 2016) HP

« SWOT like data » : Xingu River 
(amazone tributary) cross cut mroe
than 6 times by a single ENVISAT track

- d_xZ(x,t)  3 reach behaviours identified 
from ENVISAT altimetric measurements 
(riffles, pools, control sections)

- Simple effective roughness- geometry model 
(K(Z)) of this braided river reach

- Important physical proxy determined: water 
surface slope and curvature (space – time)



Quantification of Water surface deformations induced
by hydraulic controls

 WS slopes and curvatures quantified for a range of synthetic rivers and control types
 Backwater length, masking effects also quantified

Montazem, Garambois, Calmant et al. (final redaction)

Slope breaks Channel constrictions



Signal filtering and river segmentations (Garonne Upstr.)

Method: 

• Water surface elevation filtering at different length

• Segmentation following curvature (around control points)
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Signal filtering and river segmentations (Garonne Upstr.)

Method: 

• Water surface elevation filtering at different length

• Segmentation following curvature (around control points)

Different scales of curvature exist
Increasing reaches number unsurprisingly reduces the number of control points detected
This method likely preserves the ‘strongest’ controls (slightly shifted…)



On the impact of signal filtering and river segmentations 
Case of the Garonne Upstream

Rerun on two segmentations (true flow area)

Montazem, Garambois, Calmant et al. (final redaction)



Rerun on two segmentations (true flow area)

On the impact of signal filtering and river segmentations 
Case of the Garonne Upstream

Physical signal segmentation ensures less errors on WS slope on the testes cases 
for large to small reaches length



Signal filtering and river segmentations (Garonne Upstr.)

Rerun on two segmentations, Garonne Up (true flow area)

Physical signal segmentation ensures less errors on WS slope on the testes cases 
for large to small reaches length

« Geomorp
hological
bound »

« Small scale
variabilities »



Signal filtering and river segmentations (Garonne Upstr.)

For long reach length only (permanent) uniform flows visible! 
What is the importance of depicting spatial nonlinearities of flow lines?

Rerun on two segmentations, Garonne Up (true flow area)

Signal smoothing wavelength 10^4 m

Hydraulic Visibility:

Uniform flow
Non 
Uniform 
flow



In situ flow lines a large amazonian River: the Rio Negro (in situ GPS)

Large scale segmentation (cutoff 100 km) 

In situ GPS 
water profiles 
(Medeiros Moreira D.)

Montazem, Garambois, Calmant et al. (final redaction)



In situ GPS 
water profiles 
(Medeiros Moreira D.)

Water surface measurements on the Rio Negro (in situ GPS)

Smaller scale segmentation (cutoff xx km)

Geomorphologic scales, hydrologic variabilities characterized
Which river segmentation and for wich (modeling) objectives?

Montazem, Garambois, Calmant et al. (final redaction)



Partially Observed Reaches?

Montazem, Garambois et al.

What is an « observed river reach », for which objective?
 Importance of water surface slopes variability within a reach



Ongoing and forthcoming studies on physical river 
network segmentation and satellite data assimilation

• Test river segmentation on other river cases and data types

• Analysis from altimetry datasets, river width (JERS, Peckel, …) 
over the Amazone basin (and others ?)

• Geomorphology aspects, human structures

• Assess influence of river segmentation on: 

– « full » inverse problems (DA-PEPSI ?), 

– Bayesian altimetric rating curves, 

Towards extended databases

Science requirement
reaches (Lion et al. 2016)

Ex of dense in situ base HydroSWOT
(courtesy: USGS, Larnier et al.)

SWOT a priori database
(courtesy: ST, Larnier et al.)
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