

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

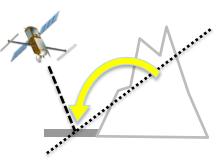
cnes

Surface Water and Ocean Topography (SWOT) Mission

http://swot.jpl.nasa.gov

A Priori Layover Analysis

Tamlin Pavelsky, Curtis Chen, Yongwei Sheng, Mike Durand

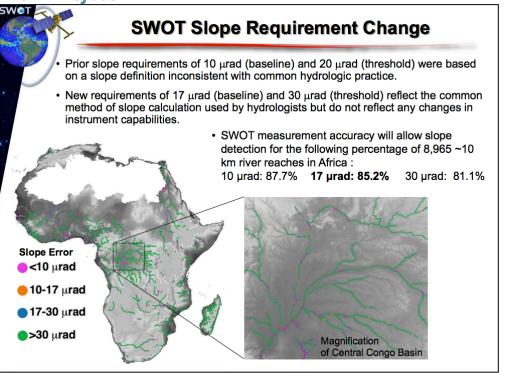

Layover occurs when, due to topography, multiples returns from different

points on the ground come back at the same time.

- When returns from the terrain "lay over" water pixels, the measured water heights will have a bias (and a geolocation error) that is proportional to the relative difference in heights, contrast, and illuminated areas.
- This effect is given purely by geometry, and there is no "knob" available in the Flight System to improve it. Mitigation is via algorithm flagging.
- Accurate knowledge of land topography is needed to flag water pixels affected by layover
 - SWOT height measurements are optimized for water, which is bright at nearnadir incidence angles
 - Land is too dark at near-nadir incidence angles for SWOT to make its own land DEM reliably for layover flagging

Layover Background

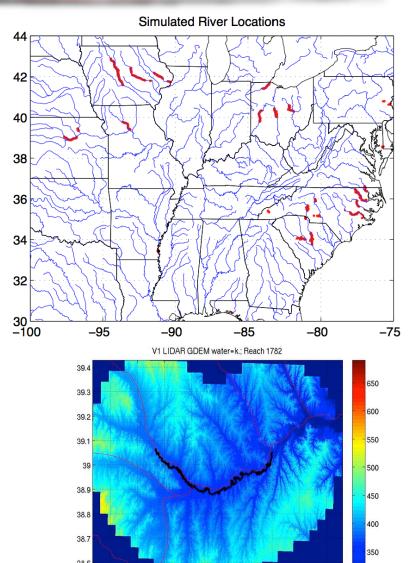
Layover: points within the lines produce a return in the same range bin



Needed Science Assessment

- Project PDR RFA on layover from M. Dettinger (RFA #14, AITS 769) requested more detailed science assessment of layover impact
 - RFA originator requested science analysis similar to what was done for slope requirement change
 - Assess how many reaches over continent would be unusable because of layover and show spatial distribution, not just statistics on height error vs. river width From Project PDR:
- Approaches:
 - Parameterized model using DEM-derived roughness, viewing geometry, and estimates of water-land contrast.
 - Simple geometric simulations using existing DEMs and viewing geometry

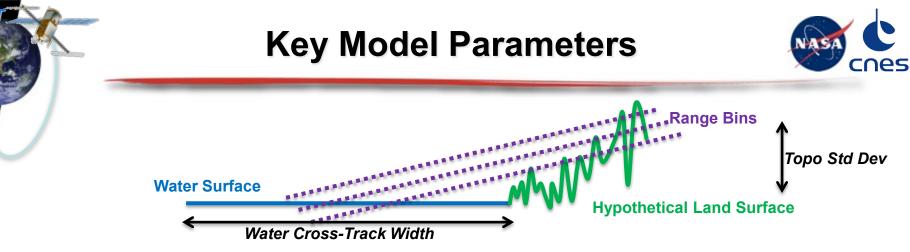
Parametrized Model Development Approach


- Develop theoretical model to describe expected statistical characterization of layover errors *after algorithm flagging*
 - Theoretical formulation is independent of simulations
 - Theoretical formulation provides more sound basis for extrapolating from limited set of simulations to wider scale
- Run high-fidelity simulations using lidar DEMs as truth and SRTM as reference DEM used for layover flagging
 - Simulations capture layover errors as well as ability of algorithms to flag layover and discard layover
 - Cannot use this direct simulation approach at basin scales because high-quality truth DEMs are not available everywhere

Lidar Data Sets for Simulation

KaRIn SE team prepared lidar data set for initial layover assessment reported at Feb. 2016 Measurement Review

- Got all US lidar DEMs from EROS data center
- Found lidar DEMs that cover known rivers with enough surrounding land area that would lay over into rivers
 - Focused on rivers because of greater sensitivity to layover than lakes
 - Around 100 lidar scenes with rivers
- Converted lidar point-cloud data into raster DEMs
 - Kept last return for bare-Earth DEM
 - Recently reran to keep first return for canopy-top scattering
- Manually adjusted water heights to prevent water from being higher than land (conservative)
- Algorithm team running new simulations based on these DEMs
- DEMs and simulated data can be shared


-07 6

-974 -972 -97

-96.8 -96.6 -96.4

Parametrized Model Development Approach

- Develop theoretical model to describe expected statistical characterization of layover errors after algorithm flagging
 - Theoretical formulation is independent of simulations
 - Theoretical formulation provides more sound basis for extrapolating from limited set of simulations to wider scale
- Run high-fidelity simulations using lidar DEMs as truth and SRTM as reference DEM used for layover flagging
 - Simulations capture layover errors as well as ability of algorithms to flag layover and discard layover
 - Cannot use this direct simulation approach at basin scales because high-quality truth DEMs are not available everywhere
- Use results from simulation to tune model parameters, especially related to error reduction from layover flagging algorithm
- Approach gives not only *what* areas may be affected geometrically by layover, but *how* those areas will be affected in terms of height errors (including effects of processing mitigations)
- Current status: Iterating simulations and model tuning

- Roughness metric as parameter for describing topography (SRTM):
 - We do not need to model layover error exactly for each precise location on ground (ie, each pixel) because hydro processing averages over wide areas anyway
 - Parameterized model is intended to give statistical characterization of layover error, not prediction of error for specific pixels
 - Standard deviation of topographic heights over local window (e.g., 1x1 km box) is relatively robust parameter over quality of different DEMs
- Cross-track width of water body (GRWL):
 - Mapping of topography into slant plane gives cross-track projection
 - For rivers, first-order quantity of interest is river width divided by $\sin \phi$, where ϕ is river flow direction relative to cross-track direction
- Imaging geometry and measurement parameters (various sources):
 - Incidence angle (important for layover geometric mapping)
 - Water/land contrast (to determine relative contribution of land contamination)
 - Resolution (to determine number of looks available for averaging)
- Algorithm flagging performance parameters (false alarm/missed layover detection) to be empirically tuned based on simulations

July: JPL finishes provisional model development

August/September: model run and evaluated by science team representatives at continental scale (Pavelsky, Durand, & Sheng)

September 26-28: ADT Meeting where preliminary results will be presented and decisions on any additional work will be made.

1st Week of December: Results presented at Measurement Review