SWOT Raster Product

Tamlin Pavelsky UNC Chapel Hill

Claire Pottier & Roger Fjortoft CNES

2005

Google Earth

Outline

- 1. Raster Product Goals
- 2. Geographic Extent
- 3. Systematic vs. On Demand
- 4. Variable vs. Fixed Grid
- 5. Spatial Resolution
- 6. Raster Variables
- 7. Calculation Method(s)

Inundated Area Raster

Raster Product Goals

- 1. Provide SWOT height and inundation extent data, along with appropriate errors and flags, resampled onto a uniform grid
- 2. Provide a means to study complex flow environments not effectively captured by other SWOT data products (e.g. wetlands, estuaries)
- 3. Measure internal variability in river reaches and lakes not captured by the vector products.
- 4. Encode data in a format (i.e. a uniform grid) familiar to the hydrology community, making it an attractive product for many potential users.

Geographic Extent of Raster Product

The raster product will be produced or producible everywhere the pixel cloud is produced.

Tile size: the proposed tile size is ~120 x ~120 km, matching the extent of the 2swath raster.

Proposal: data will be produced for any tile that contains detected water. If no water is detected, no data granule will be produced.

Fixed Grid vs. Variable Grid Processing

Advantages of Variable Grid

- Requires no a priori input
- Automatically adjusts to orbit variations

Advantages of Fixed Grid

- Facilitates time series analysis
- Ensures spatial grid continuity
- Doesn't require unique spatial reference information to be stored for individual tiles

Recommendation: fixed grid processing to facilitate time series analysis

Systematic and On-demand Raster Processing

- Systematic production in mission centers
 - +Global coverage, archived, systematic/global...
 - Fixed and relatively low resolution(s)
- On-demand production in distribution centers*
 - +Flexible in terms of coverage, resolution/sampling, selection of data layers...
 - Not archived, more limited coverage (<< global)
- What applications are supported by systematic and on-demand rasters?

Solution: both systematic and on-demand processing.

Spatial Resolution

<u>Advantages of Higher Resolution (e.g. 100 m)</u> Greater ability to resolve water feature boundaries

Fewer mixed pixels

Note: very high-resolution would converge to pixel cloud without smoothing

Advantages of Lower Resolution (e.g. 250 m or 1km)

Substantially lower pixelwise height errors, especially in mixed pixels Smaller data volumes

Solution: produce both high resolution (100 m) and lower resolution (250 m) options. Other resolutions available on demand.

Choice of file formats

Data format: netCDF, GeoTIFF, and JPG2000

- Two (somewhat) separate considerations: backend operability, user friendliness
- Recommendation: Store as NetCDF, make available as GeoTIFF, JPG2000, etc.

Proposed Fields for SWOT Raster Data Product

Data Fields

- Height & uncertainty (m)
- Inundated Area & uncertainty (m² or %)
- Average sigma0 & uncertainty (dB)
- Number of pixel cloud pixels contributing to raster cell (m²)
- Cross-track distance of raster pixel center (m)

Are there any important fields we are currently missing?

Quality Fields

- Low SNR Area (m² or %)
- Ice Cover Area (m² or %)
- Layover Area (m² or %)
- General data quality flag (TBD)

Correction Fields

- Geoid: geoid height above reference ellipsoid
- Solid Earth tide model
- Pole tide & water tide models
- Orbit quality flag
- Instrument flags
- Dry, wet tropospheric and ionospheric corrections
- Cross-over correction

Preliminary Example of Raster Data Product

To illustrate the key variables in a raster product, we have produced a rough prototype at 10 arcsecond resolution based on the raw pixel cloud output over the Po River during a flood event.

The raster will be produced from the medium pixel cloud product, but the Po was originally run using the raw pixel cloud.

Height Raster Map

Calculated from *Height*

Area Raster Map

Calculated from *No_Layover_Ground_Resolution*

Pathway Forward

- Develop more robust raster algorithms and example data products over a range of different environments.
 - Requires simulations of rivers, lakes, wetlands
 - We welcome submission of existing simulations to test algorithms
- Lead in France: C. Pottier
- Lead in the U.S.: T. Pavelsky