

SWOT Science Team

PIXEL CLOUD POLYGONIZATION AND FLOODPLAIN DEM GENERATION

Damien Desroches, Brent Williams

26-28 June 2017

Toulouse, France

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

PIXC_VEC PRODUCT

KaRIn phase noise leads to geolocation errors

- Pixel cloud height and geolocation is relatively noisy
- Impacts processing and products
 - Width estimation
 - Flood-plain DEM prediction very sensitive to geolocation errors
 - Raster product and river characteristics could be impacted
- Need for more smoothing ⇒ PIXC_VEC add-on to PIXC product

Methodology

- River and lake processing will estimate average height (and slope) along each water body
- The pixel cloud geolocation can be constrained using these heights instead of using the noisy phase
- Possibility to iterate the river/lake processing to improve slope/height prediction using the new geolocation

EXAMPLE OF IMPROVED GEOLOCATION ON THE PO RIVER

Input Pixel cloud simulated on the Po river by the OSU team

C

Lat/Lon : [11,13 /45,06] River width about 500m (main branch)

Centerline True water mask

Example of noisy pixel cloud Improved geolocation pixel cloud Estimated shape

APPLICATIONS

Polygonization

- For both rivers and lakes
- In SAR or ground geometry
- « Concave-hull » approach to create polygons from pixel cloud
- Not actually included in standard products

Width estimation

- Precise and local estimation of river width according to the regularized pixel cloud
- Using similar method to RiverObs (point to point) but on shape-file polygon

Flood-plain DEM estimation

- Bathtub ring method using improved geolocation/polygonization
- Preliminary results

FLOODPLAIN DEM

Floodplain DEM requirement & goal:

Requirement 2.6.4 ("cross-section map")

• A DEM of land elevations near the boundary of water bodies shall be derived from water elevations and extent [... after the first year of data]

Goal 2.6.3i (DEM from land elevations, but only over floodplain)

 A Level-2 standard data product will be a topographic map of all land elevations. This global digital elevation model (DEM) will be constructed from many SWOT orbits.

Two concepts

Bathtub ring: use water heights for edge pixels to estimate floodplain DEM elevations (limited to observed min/max water heights/extent) → current baseline Interferogram stacking: use land heights, but need to beat down noise for height/geolocation by temporal averaging (takes a lot of passes) → Very sensitive to thermal noise / phase unwrapping

BATHTUB RING METHOD

On geo-referenced grid (similar to water probability maps)

Average the heights of water pixels (weighted by height errors)

- Edge pixels are assumed to be approximately the same height as the land underneath
- Edge pixels may have larger height errors due to mixed pixels and classification errors. Edge heights are improved using spatial regularization to extend interior water heights.
- Therefore use improved geolocation and corresponding smoothed heights
- Multitemporal averaging/regularization weighted by height errors, layover flag etc.
- After enough accumulation converges to the floodplain DEM, between observed min and max stages
- Interpolation over holes between contours from the different observed water heights

Cross section view

PRELIMINARY RESULTS ISSUED FROM HR SIMULATOR

DISCUSSIONS AND LIMITATIONS

What is the best way to generate the flood-plain DEM using this approach?

- For small lakes: could use level lines for « constant » height areas
- Interpolation between different passes
- For rivers, big lakes and wetlands (general case): 3D interpolation using improved geolocation and associated heights along the water bodies
 - ⇒ Interpolation using polygons or directly on PIX_VEC point cloud?
 - ⇒ SAR or ground geometry?

Some limitations to deal with

- Water detection errors (overestimation due to azimuth smearing, mixed pixels...)
- Approach for polygonization: in SAR geometry to reduce artefacts?
- Final coverage limited by water level dynamics: min/max water level observations
- The spatial precision/resolution of the flood-plain DEM will depend on the frequency of the observed water level

