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* River discharges are
poorly monitored in
many regions

* Lack data to properly
constrain runoff in LSMs
and predict discharge in
ungauged basins

* What new data and methods could fill
this void?

 SWOT has the potential, but how do we
make the best use of the data for global
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9213 GRDC stations with monthly data, incl. data derived from daily data (Status: 27 May 2015) EQ

scale modeling/forecasting applications? l IIIIIII“'IIIIIIIi

Koblenz: Global Runoff Data Centre, 2015, @CRDC®
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* How can we use this data source to better predict spatially
and temporally consistent records of runoff and discharge?
— Statistical interpolation techniques (Paiva et al., 2015)

— Data assimilation with hydrodynamic model (Pan and Wood, 2013,
Inverse Streamflow Routing)
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Discharge at Discrete Locations Runoff Fields Discharge at All Locations

* How does the potential orbit and spatial orientation of basins
constrain our usage?
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Inverse Streamflow Routing

Idealized Experiment

Initial Guess Synthetic Truth
plnit pSyn

Experiments with theoretical SWOT
observations to construct basin wide
discharge:

e Utilizes a Kalman Filter & Smoother
* Linear routing model (Lohmann)

e ~150 crossing “gauges” assimilated pnit
e 25 crossing “gauges” evaluated

e Gauges removed and to be reconstructed
e Guages in use °

inverted
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From Fisher et al.
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ISR — SWOT Assimilation

* Previous application of Inverse Streamflow Routing to Ohio river basin

illustrated ability to assimilate SWOT obs.

Discharge Reconstruction: SWOT_Only
6000 ) USGS 03216600, 160511 km? NSE: 0.923 NSE Init: 0.456
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* Performance constrained by spatial and temporal coverage:

e How will SWOT observe other river basins?

* How will their location and spatial
properties affect the assimilation?
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Global Basins

* Inverse Streamflow was applied to 32 large global basins
* Representative of a wide range of hydrologic and geographic properties
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Initial Runoff
Conditions

Synthetic Experiments

Discharge Data Assimilated

All Gauges

SWOT Only

Mixed Gauges
and SWOT

Long Term
Basin Mean

In-Situ Discharge &
Min. Runoff Info

SWOT Discharge &
Min. Runoff Info

Mixed Discharge &
Min. Runoff Info

Daily
Climatology

In-Situ Discharge &
Some Runoff Info

SWOT Discharge &
Some Runoff Info

Mixed Discharge &
Some Runoff Info

TMPA Real Time

In-Situ Discharge &
Obs. Runoff Info

SWOT Discharge &
Obs. Runoff Info

Mixed Discharge &
Obs. Runoff Info

 Model Setup:

Initial conditions = VIC LSM forced with runoff climatology

Discharge observations = VIC LSM forced with Princeton Global Forcing
Theoretical SWOT observations = Model discharge sampled from

theoretical 21-day, 890 km altitude, 77.6° inclination orbit
0.25° spatial res. & daily temporal res.

~30% errors for observations based on current retrieval methods

PRINCETON UNIVERSITY 7




Discharge Interpolation

Assimilation using runoff climatology + SWOT
sampled discharge time series for the
Danube

a) Gauge 0177, 79322 km® NSE: 0.891 NSE Init: 0.540
4000 —

3000 —
2000

1000

0

SWOT Crossing Frequency
9 S5 NN

o L N W b

— Synthetic Truth
= [ nitial Guess
——Reconstructed from Inverted Runoff

b) Gauge 01, 592346 km? NSE: 0.860 NSE Init: 0.545
8000

Discharge (m3/s)
N iy D
o (] (@]
o o o
o o o

o

50 100 150 200
Day in 2009

250 300

From Fisher et al. (In Prep.)

PRINCETON UNIVERSITY 3



Frequency

Frequency

-
()]

-
o

-
()]

-
o

(@)

o

(@)

o

Global Interpolation Performance

Nash-Sutcliffe Efficiencies (NSE) for reconstructed gauge discharge time series

Amazon Amur Congo Danube
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: What causes the assimilation 1
performance to differ across basins? [
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Global Applicability

SWOT orbit dictates the availability

of data for assimilation

Depends on River:

— Latitude

— Size (length, width and basin area)
— Orientation

Day 1 and 2 Crossings for the:
Danube & Nile
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Observation Patterns

Ohio River Danube River Nile River

SWOT Crossing Frequency SWOT Crossing Freguency
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Information Content from Observations

et =

| I +/- Large basin with large river in
one dominant orientation

- Less frequent observations

51 | .
"Wkl || (lower latitudes)
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'- |+ Large basin with large rivers in a
variety of orientations
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Rel. Basin Area Observed

+ More frequent observations
(higher latitudes)

Orblt Day From Fisher et al. (In Prep.)
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Conclusions

For most basins we are able to use ISR
reconstruct spatially and temporally

SWOT Crossing Frequency

Nile River

consistent discharge
— Also reconstruct runoff fields
4
Utilization of SWOT observations will >
be dependent on: 2
— Timing and orientation of overpasses !
— Basin geometry and orientation 0
— Availability of in-situ discharge or runoff
information to aid in the assimilation
SWOT Crossing C
Future work is also needed to: k=
— Better quantify orientation of rivers ool 5
relative to orbit H =
— Differentiate observations of rivers and st
floodplain areas o
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Thank you,
Questions?
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Kalman Smoother

Inverted Runoff

Forward model (Linear Routing): ¥ = HX

Where H = Green’s Impulse Response Function (Lohmann, 1996) ' ’
The integrated routing process can then be given a :
linear form: q, r | |
q r.
y,=HXx+HX +-+HX +¢ Y= 7 X, = ?
r
| m . I $I f E
Inversion is done through a Kalman Filter & Smoother: - 4 -
SN o 'S T '
x" =x"+K, (y'-H'x' -L'x'_,) PN
g )
The weight of the correction (Kalman Gain) is determined as: \rlj\% -

K,=PH"(HPH"+R,) ‘/

Time —»

Smoothing window of 2x max flow length (days) was used for this study
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