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Introduction

- The SWOT error budget is documented in the SWOT 
Mission Error Budget Document, JPL D-79084.

- Describes the measurement, and documents the entire 
derivation and flow-down of the error budget.

- Document underwent significant expansion, and Revision A 
was recently released and made available on 
http://swot.jpl.nasa.gov

- In this presentation, we discuss the addition of motion 
errors to the overall ocean error budget.
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Ocean SSH Requirement <1,000 km

The fundamental topographic measurement is provided by KaRIn, as a swath measurement 
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Ocean Error Budget Drivers

- Ocean SSH requirements apply over short time scales (1,000 
km or ~2.6 min) and are described as a PSD. 

- Drives overall stability of the flight system over these time 
scales

- Drives a minimum signal-to-noise ratio in the KaRIn
measurement

- Also need to consider other error contributors:
- POD: radial height errors 
- Media effects: causing propagation delays of the EM signal: wet 

tropo, dry tropo, ionosphere
- Sea-State Bias: different scattering from troughs and peaks of the 

waves bias the measured height
- Wave effects (volumetric decorrelations, surf-board effect, motion 

errors)
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Velocity Effects on Interferometric Height (I)

• Target motion causes errors in the 
interferometric height estimate

– This is a well known effect: moving targets 
appear shifted in SAR images

– Without knowledge of (and correction for) 
the target motion, the difference in 
interferometric phase between targets at the 
true and apparent target positions becomes 
an error in the interferometric measurement. 

• Second-order effect but SWOT’s required 
accuracies are challenging enough that 
higher-order effects cannot be ignored.

– In addition, along-track shifts from spatially 
variant target motion (e.g., waves) cause 
height errors through spectral distortion 
(“wave bunching”)
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Motion errors are a fairly recent development
– Emerged as a result of recent AirSWOT observations and data analysis
– For SWOT, the pointing control error is sufficiently small to ensure that velocity errors 

are small, and the complex averaging over 7.5 km cross-track mitigates the impact of 
wave bunching such that the motion errors can be absorbed.
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Velocity Effects on Interferometric Height (II)

• Two separate effects: cross-track surface 
velocities and vertical velocities.
- Both velocities couple as a measured radial 

velocity (the projection onto the look vector), 
i.e. a Doppler shift.

- However, given the near-nadir geometry, 
their projections are very different: 
¨ Surface velocities couple with a sin(look 

angle) = C/r, which is small (0 at nadir). 
¨ Vertical velocities (due to the circular, or 

orbital motion of the waves), couple with 
a cos(look angle), which is not small. 

- The Doppler shift is proportional to the ratio 
of the surface radial or cross-track velocity v 
to that the platform velocity vp, v/vp, for vp>>v
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Velocity Effects on Interferometric Height (III)

• With perfect attitude and a perfect yaw-steered, undistorted baseline, the 
impact of surface motions for SWOT is negligible (<0.1 mm)

• In the presence of attitude control errors, the dominant error is given by a 
pitch, introducing, for cross-track velocities, a swath-average height error:

• Similarly, for a radial velocity, the pitch error dominates introducing a height 
error:

• Given the difference in H to     is ~900 km to 38 km, and considering ocean 
surface velocities of ~0.2 m/s and ocean radial velocity is ~0.1 m/s, radial 
velocities dominate the height error by a factor of ~10.

δh =C vs
vp
α pitch

δh = H vr
vp
α pitch
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Velocity Effects on Interferometric Height (IV)

• Since for the ocean the SSH error is expressed in the form of a PSD, we 
derive upper bound for the PSD of the radial and cross-track velocity errors.

• For cross-track velocities, we used the latest version of the ECCO-2 global 
model to derive a PSD of the ocean surface velocity, and extract an spectral 
upper bound.
- Used u and v components of the surface velocity from the model, and computed 

the projection in cross-track along the orbit according to the nominal heading
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Mean Brightness Modulated Radial Velocity 

• The ocean radar brightness given by Geometric Optics:

is well known to present several brightness modulations:
– Hydrodynamic modulation: dependent on the mean squared slope (mss) of the small 

waves: 

– Tilt modulation: dependent on the local incidence angle and modulated by large wave 
slopes
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magnitude of the hydrodynamic transfer function 
phase of the modulation; can be in phase with height 
or velocity depending on modulation phase

large scale slope

mean squared slope (mss)
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reflection coefficient

90o out of phase with elevation and in phase with the velocity

tilt modulation function; face of the wave facing the radar 
significantly brighter than the one facing away from the radar. 

φm ∈ [200, 240] deg



Mean Brightness Modulated Radial Velocity 

• We consider the magnitude of the 
hydrodynamic transfer function to be 
consistent with a 3% EM bias, and the phase 
term consistent with observations in the 
literature (180-240 deg).

– Likely conservative: initial AirSWOT
observations indicate that at SWOT angles, 
the brightness modulation is dominated by 
the tilt modulation, with hydrodynamic 
modulation playing a small role, reducing the 
impact of the velocity errors.

• Used a year of Global WaveWatch-3 
realizations to obtain PSD of radial velocities.

– From WW-3, we extract the primary wave 
mean wavelength and SWH, from which the u 
(horizontal) and ω (vertical orbital) 
components are computed assuming 
monochromatic wave, and used the theory to 
obtain the brightness-modulated heights.

– 68 % for SWH ≤ 2 m is ~10 cm/s, and 16 
cm/s for all SWHs.
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PSD allocations for cross-track and radial velocities

• We consider that attitude errors are fixed right at the value of 
the requirement level, to derive an upper bound of the error 
that can be used to generate an allocation. 

• In addition, it is also worth noting that the errors associated to 
yaw are second-order compared to those induced by a pitch. 
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Height Distortion From Wave Bunching

True	wave	height	

Bunched	height	
observed	by	SAR

Wave	
vertical	
velocity

Azimuth shift is proportional to line-of-sight 
target velocity, which is mainly due to wave 
vertical velocity for near-nadir viewing 
geometry

This pixel has lower 
density of mapped points.

This pixel has higher 
density of mapped points.

• Averaging of pixel heights without taking into 
account pixel power leads to a height bias. 

• In the simple sinusoid case shown, heights 
would be biased low.

• Wave bunching is a non-linear distortion, 
so spectrum of observed heights can 
exhibit energy at spatial frequencies that 
are not present in the true wave field



• Effect of wave bunching has been derived analytically (Rodriguez, et al.), 
assuming low spatial frequency waves (long wavelength) and low SWH

• Simplified model expression is given by:

• Measured height spectrum is distorted by a term proportional to the 
convolution of the radial velocity spectrum and the true height spectrum. 

– This term introduces leakage into the lower range of along-track frequencies, 
producing a spectral “hump” (an unexpected increase in energy within a certain 
range of frequencies in the measured SSH PSD). 

– Maximum distortion occurs when the waves are perfectly aligned in the along-
track direction (𝜙=90 deg), and effectively vanishes when they are completely 
aligned in the cross-track direction (𝜙=0 deg).

• For strong non-linearities, linearization approximation of analytical model 
breaks down

– Analytical model provides basic intuition and validation of simulations for 
weakly nonlinear cases

– Simulations are used to capture non-linearities without approximations at larger 
SWH and/or shorter wavelength cases

Analytical Model



Worst-Case 2 m SWH Case
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SWOT

Truth

Wave bunching simulation for 2.8 cy/km waves oriented along-track for 2m SWH. 
The black line represents the true spectrum of the waves, and the blue line the resulting 
wave bunching error for SWOT considering the 500 x 500 m averaging performed by the 
on-board processor, and additional cross-track unweighted height averaging to 3.5 km. 



Differences Between SWOT and AirSWOT

• Relevant differences between SWOT and AirSWOT
– SWOT OBP does averaging on complex interferogram values to 500 x 500 

m resolution; AirSWOT averages high-resolution height samples without 
power weighting

– SWOT has much wider swath and can do more cross-track averaging (L2 
requirement assumes 7.5 km); AirSWOT cross-track averaging is limited to 
~1–2 km

– AirSWOT airborne altitude implies additional distortion as cross-track 
sample spacing changes with incidence angle over length scales of ocean 
waves

– AirSWOT is more sensitive to height errors from cross-track-shift/phase-
bias mechanism (large pitch, lower platform velocity), which cannot be 
corrected when wave bunching corrupts ATI velocity estimate

• SWOT differences from AirSWOT imply lower sensitivity to height 
errors from wave-bunching mechanism
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Simulated AirSWOT vs. SWOT Spectra 
with AirSWOT 20150417 Input Spectrum

(500	m	x	500	m)	interferogram	average,	then	1 km	
cross	track	unweighted height	average

(500	m	x	500	m)	interferogram	average,	then	
3.5 km	cross	track	unweighted height	average

Truth

Truth

AirSWOT-Like	Processing

AirSWOT-Like	Processing

SWOT
SWOT

SWOT	is	much	less	sensitive	to	wave-bunching	errors	than	AirSWOT

SWH	=	3 m	for	these	simulations



SWOT Motion error allocations

Note these allocations assume motion error PSDs at the full 1-sigma pointing error 
requirement, 3% EM bias & 240 deg modulation phase.



Ocean Top-Level Error Budget Allocations
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Summary

• The effect of motion errors on the SWOT performance 
is well understood.
– Errors with perfect attitude are negligible; only become relevant 

under the presence of attitude control errors. 
– With the existing attitude control requirements, the error is 

small 
– Wave bunching is a small effect due to averaging at complex 

interferogram level on-board and cross-track averaging. 
• Motion errors are now formally accounted for in the 

error budget document.
– The error contribution is small and can be absorbed with small 

impact to existing margins.
– Conservative envelope of error over the oceans is ~one order 

of magnitude lower than the SSH spectrum for Science 
Requirements specifications (2m SWH).



Backup
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Simulated SWOT Height Std Dev
From Wave Bunching

1	m	SWH
0.4	mm	max

3 m	SWH
4 mm	max

2 m	SWH
2 mm	max

4	m	SWH
8 mm	max

• Results plotted 
vs. P-M peak 
location in spatial 
frequency plane

• Results 
interpolated 
between sim 
points (white 
circles)

• Errors are smaller 
than equivalent 
integrated SWOT 
reqt of 1.4 cm for 
SWH < 2 m
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EM bias


