River vector product status

Renato Frasson¹, Michael Durand^{1,2}, Phil Callahan³, Joe Turk³, Claire Pottier⁴ Sylvain Biancamaria⁵, Brent Williams³, Rui Wei¹

¹Byrd Polar and Climate Research Center, Ohio State University ²School of Earth Sciences, Ohio State University ³Jet Propulsion Laboratory, California Institute of Technology ⁴Centre National d'Etudes Spatiales ⁵Laboratoire d'Etudes en Géophysique et Océanographie Spatiales

SWOT 3rd Science Team Meeting, Montreal, Canada. June 26-29, 2018

The river vector products

- Spatial aggregation:
 - Nodes: Equally spaced nodes every ~ 200m
 - Reaches: Collection of nodes ~ 10km long
- Temporal representation:
 - Single pass: Nodes and reaches observed in either side of the swath for a single pass. Likely distributed as one shapefile file per continent.
 - Cycle average: aggregation of all passes in a cycle. Possibly distributed as one shapefile per continent.
 - Kostas Andreadis will discuss cycle averages on Day 3 at 11 am
- Basic and expert versions

Basic versus expert products

- Basic version:
 - Shorter version of the products including best estimates of values such as area, discharge, diagnostics flags, etc.
- Expert version
 - Extensive version with extra fields containing measurement diagnostics, instrument calibration, geophysical corrections, discharge algorithm parameters, etc.

River nodes - Basic vs Expert

Attributes are divided into 8 categories:

- 1. Time and location:
 - Node id, reach id, time stamp, centroid of detected pixels (latitude and longitude) and associated uncertainties.
- 2. Hydro parameters:
 - Water surface height with respect to geoid and ellipsoid and associated uncertainties,
 - Width and estimated uncertainty,
 - Planform area (more to come) of water and uncertainties,
 - Cross-track distance, node distance, node length,
 - Metric of layover effect.
- 3. Geophysical flags:
 - Number of pixels per node,
 - Flags: dark water, layover, frozen surface, measurement quality, partial/fully observed, quality of cross-over calibrations.

River nodes - Basic vs Expert continued

4. KaRin σ_0 information:

- Radar σ_0 and uncertainty, Radar σ_0 calibration, Radar σ_0 atmospheric correction from model data.

5. Geophysical references:

- · Geoid model height,
- Tides: Earth, pole, water, and load.
- 6. Geophysical range corrections:
 - Dry and wet tropospheric and ionospheric correction to heights.

7. Instrument corrections:

- Cross-over calibration, KaRin orientation (attitude), overall instrument height bias, internal calibration.
- 8. Items from the prior river database:
 - Prior height and historical variability,
 - Width and historical variability, distance from outlet, planform type, dam id.

River reaches – Basic vs Expert

- 1. Time and location:
 - Reach id, time stamp, coordinates of the center of the reach (latitude and longitude).
- 2. Hydro parameters:
 - Water surface height and slope and their uncertainties
 - Width and uncertainty,
 - "Enhanced" slope: water surface slope computed from smoothed node heights,
 - Cross-sectional area change and uncertainty,
 - Planform total area (+ other areas) of water pixels and uncertainty,
 - Layover metric,
 - Average deviation from a priori and detected node locations,
 - Cross-track distance,
 - Consensus discharge and uncertainty,
 - Discharge from individual algorithms.

River reaches – Basic vs Expert

- 3. Flags:
 - Number of good nodes,
 - Dark water, frozen surface, layover effect, quality summary, partial observation, quality of cross-over calibrations.
- 4. Geophysical references:
 - Geoid height and slope with respect to the ellipsoid,
 - Tides: Earth, pole, water, and load.
- 5. Geophysical range corrections:
 - Dry and wet troposphere and ionospheric corrections to surface height.

River reaches – Basic vs Expert

6. Instrument corrections:

- Cross-over calibration,
- KaRin orientation (attitude),
- Overall instrument height bias,
- Internal calibration.
- 7. Copy of Prior river database:
 - Number or up and downstream reaches and their ids,
 - Prior height and width and their historic variability,
 - Planform class,
 - Number of nodes per reach, distance from outlet, reach length,
 - Mean annual flow, dam id, discharge parameters.

Planform Areas

- We currently envision the following elements describing areas:
 - area_total: Total estimated planform area. Includes corrections for dark water. That's our best estimate of the planform area,
 - area_detct: Area of detected water pixels,
 - area_ht: Area of pixels used to compute height.

Discharge

- To avoid confusion, the ADT plans on including only the consensus discharge in the basic product.
- The method to compute a consensus discharge from the ensemble of individual algorithms is under investigation (more on this on Friday).

Height and slope uncertainties

- Node height and slope uncertainty formulations:
 - Simple height uncertainty derived from pixel height variability and number of pixels in a node is not a good predictor of node height uncertainty!
 - Due to spatial correlation of pixel height error.
- Reach height and slope uncertainties:
 - Node height errors also present spatial correlation, so methods based on linear regression error estimation do not work.
- Methods to estimate node height uncertainty are in advanced stage.

Partially observed reaches

Partially observed reaches

- Limits on the fraction of missing nodes are under evaluation.
- Partial observation flag could assume 3 values:
 - Totally observed
 - Partially observed
 - Severely impacted

Investigation of special cases

- Unresolvable multi-channel reaches:
 - Could be processed in the same way as single channel reaches:
 - Pixels are mapped into the combined centerline,
 - Width = $\frac{Inundated area}{Reach length}$

 If channels are resolvable, e.g. wider than 100 m and longer than 10 km, they could be treated separately. Methods are currently under development

Special cases - continued

- Flat reaches:
 - Reach slope < slope uncertainty.
 - Discharge will not be computed by Manning's based algorithms.
 - More appropriate methods are under investigation.
- Reservoirs:
 - Short reach surrounding a dam will be defined.
 - Discharge will not be computed by Manning's based algorithms.
 - Storage change can be used to constrain up and downstream discharge.
 - Treated in more detail in Lake products.
- Waterfalls:
 - As with man-made dams.

Summary

- The ADT is converging towards the product attributes and their names:
 - Renewed effort to harmonize lake and river product to improve user experience.
- Methods for computation of water surface elevation uncertainty are forthcoming. Width and slope are under development.
- The definition of special cases and how they will be handled is advancing.

Thank you for your attention!!

Questions?