Influence of Submesoscale Flows and Inertia-Gravity Waves on Lagrangian Transport Barriers

* Columbia University, * NYU , ** Princeton University

SWOT Meeting, Montreal, 2018

Anirban Sinha^{*}

Ryan Abernathey^{*} Dhruv Balwada⁺

Nathaniel Tarshish**

Lagrangian Coherent Structures

Lagrangian coherence, Past Studies : Satellite Altimetry

Wang et al., 2016 JGR

MITgcm LLC runs IIc_4320 : global simulation on 1/48 $^{\circ}$ lat-lon-cap grid, 90 vertical levels

Agulhas region hourly snapshots (1750 time steps (~ 73 days))

Surface Vorticity in the Agulhas region

Frequency Spectra (surface KE)

- How do small scale turbulent motions affect :
 - material transport barriers
 - vertical subduction
 - lagrangian dispersion

Temporal Filter

Wavenumber Spectra

LAVD (Lagrangian averaged vorticity deviation) $LAVD_{t_0}^t(x_0) := \int_{t_0}^t |\omega(x(s;x_0),s) - \overline{\omega}(s)| ds$ Haller 2015 ARFM, Haller et al. 2016 JFM

Eddy I : An Area-preserving eddy

RCLV 1, 3D weekly

Eddy I : An Area-preserving eddy

RCLV 1, 3D daily

Eddy I : An Area-preserving eddy

RCLV 1, 3D hourly

Eddy II : A shrinking eddy

Eddy III : An expanding eddy

RCLV 4, 3D weekly

Summary

strong IGW / tides, submesoscale

KE spectra Divergent ~ Rotational

 Temporal filter (avg.)

affects Lagrangian coherence, small scale mixing, vertical subduction

doesn't affect large scale horiz. mixing filtered out IGW / tides, submesoscale

KE spectra Divergent < Rotational (mostly balanced flows)

Coherent eddies, Sharp mat. transp. barriers

Vertical motion suppressed

Thank you.

Appendix

Past Studies : Satellite Altimetry

Lyapunov exponent, general idea: $|\delta z(t)| \approx e^{\Lambda t} |\delta z_0|$

$$\Lambda_{t_0}^t(\mathbf{x}_0) = rac{1}{t-t_0} log \sqrt{\lambda_2(\mathbf{x}_0)}$$

Waugh et al. (2011,2012; JPO), Rypina et al. (2012, JPO), Abernathey & Marshall (2013, JGR)

Beron-Vera et al., 2008, GRL

MITgcm offline with AVISO stirring field

1/4 $^{\rm o}$ AVISO velocity (7 day interpolated to daily) interpolated to 1/10 $^{\rm o}$ model

 $1/32\ensuremath{\,^\circ}$ particle grid, trajectories output daily

Lagrangian coherence, Past Studies : Satellite Altimetry

Eddy II : A shrinking eddy

RCLV 2, 3D daily

Eddy II : A shrinking eddy

RCLV 2, 3D hourly

Eddy III : An expanding eddy

RCLV 4, 3D daily

Eddy III : An expanding eddy

RCLV 4, 3D hourly

