# Reconstructing 3-D Upper Ocean Circulation Field in the Presence of Unbalanced Motions

## **Bo Qiu & Shuiming Chen** Dept of Oceanography, University of Hawaii

JPL collaborators: Jinbo Wang, Lee Fu & Patrice Klein



SWOT 3<sup>rd</sup> Science Team Meeting Montreal, Canada, 26-29 June 2018

## **Background:**

- Small mesoscale & submesoscale signals are mostly advected by circulation they're imbedded in
- From subtle phase changes, it allows us to reconstruct 3D balanced upper ocean circulation field, including w
- This talk assesses reconstructability using the SWOT simulator & MITgcm Ilc4320 in the context of eSQG framework (Lapeyre & Klein 2006)
- Our recent study shows that IIc4320 simulates well the ADCP-measured balanced/unbalanced motions in the northwestern Pacific Ocean



Qiu et al. (2018, JPO)



- Focus on a Kuroshio Extension box
  30°-40°N, 144°-154°E
- The area has large balanced & moderate unbalanced signals (see right panels; different color scales)



Qiu et al. (2018, JPO)



- Focus on a Kuroshio Extension box
  30°-40°N, 144°-154°E
- The area has large balanced & moderate unbalanced signals
- This area is chosen because of enhanced regional submesoscale signals (right panels: typical daily-mean ζ & w field in winter)



Input: 10° x 10° hourly η field (in dashed box) or SWOT-simulator "measured" hourly η data within the 5-day sub-cycle + random measurement errors

Target: 6° x 6° 3-day-mean ζ & w field (in solid box); the smaller target box is chosen to avoid edge effect



For a 6° x 6° box, time difference among various swaths in one sub-cycle < 4 days



Input: 10° x 10° hourly η field (in dashed box) or SWOT-simulator "measured" hourly η data within the 5-day sub-cycle + random measurement errors

- Target: 6° x 6° 3-day-mean ζ & w field (in solid box); the smaller target box is chosen to avoid edge effect
- For eSQG to work, a box encompassing full mesoscale features is required, even though a smaller target box gives better synopticity
- Because of fast evolution of mesosubmeso-scale features, it does <u>not</u> help to bring in η data from neighboring sub-cycles (Qiu et al. 2016, JPO)
- With target being the 3-day-mean field, the reconstructed field captures "balanced" ζ & w signals





- For eSQG to work, a box encompassing full mesoscale features is required, even though a smaller target box gives better synopticity
- Because of fast evolution of mesosubmeso-scale features, it does <u>not</u> help to bring in η data from neighboring sub-cycles (Qiu et al. 2016, JPO)
- With target being the 3-day-mean field, the reconstructed field captures "balanced" ζ & w signals → dynamically more relevant







 Hourly η field contains unbalanced signals that contaminate near-surface ζ & w ; reconstructed ζ & w improve in subsurface (z > 100m)

• The subsurface improvement is also due to reduction in submesoscale balanced motions







### Reconstructed w & $\zeta$ correlations as a function of time

#### target 3-day-mean $\eta$ field



### **Comments on mapping of n field:**

A non-trivial issue !!

Used simulator-sampled  $\eta$  data within a sub-cycle (  $\pm 2$  days) only

Determined "optimal" spatial mapping scale by trial-and-error

#### simulator-generated $\eta$ errors



### simulator-sampled hourly $\boldsymbol{\eta}$ field



#### mapped $\eta$ with optimal scale

(b) SWOTsimulator+OI on 2012-03-29



145°E 147°E 149°E 151°E 153°E



- OI-ed  $\eta$  field smears out unbalanced  $\eta$ signals that helps to "improve" near-surface  $\zeta$ & w reconstruction (when compared to the use of original hourly η field)
- Subsurface reconstruction deteriorates due to smearing of mesoscale η signals



## Reconstructed w & $\zeta$ correlations as a function of time





## Reconstructed w & $\zeta$ correlations as a function of time



eSQG reconstruct using SWOTmeasured η

eSQG reconstruct using hourly η



- Effective SQG theory is a simple, but promising, formulation to reconstruct 3-D circulation field, including w, from the SWOT SSH measurements in high-EKE oceans
- With the need for interpolation, presence of unbalanced signals does not pose a significant problem for reconstruction
- Within a 3-day subcycle, the reconstructed ζ & w can reach c = 0.6–0.7 & 0.3–0.6, respectively, when compared to the 3-day mean field

(analyses are being pursued in other regions of the world ocean to quantify the above 2 points)

Better reconstruction theories (especially within the ML) & interpolation methods are needed in future studies

## Effective surface quasi-geostrophic (SQG) theory: Lapeyre & Klein (2006)

• Under the assumption that interior upper ocean PV is correlated to the surface PV anomalies, the geostrophic streamfunction anomaly  $\psi$  becomes functionally related to the SSH anomaly  $\eta$ :

$$\hat{\psi}(\mathbf{k},z) = \frac{g}{f_o}\hat{\eta}(\mathbf{k})\exp\left(\frac{N_o}{f_o}kz\right)$$

where  $^{\circ}$ : horizontal Fourier transform, k : horizontal wavenumber, and N<sub>0</sub> : effective buoyancy frequency.

• Once  $\psi$  is specified, 3-D fields of relative vorticity, buoyancy, and vertical velocity can be deduced from geostrophy, hydrostaticity, and advective buoyancy equation, respectively :

$$\begin{split} \hat{\zeta}(\mathbf{k},z) &= -k^2 \hat{\psi}(\mathbf{k},z), \\ \hat{b}(\mathbf{k},z) &= \frac{N_o k}{c} \hat{\psi}(\mathbf{k},z), \\ \hat{w}(\mathbf{k},z) &= -\frac{c^2}{N_o^2} \left[ -J(\widehat{\psi_s},b_s) \exp\left(\frac{N_o}{f_o}kz\right) + J(\widehat{\psi},b) \right] \end{split}$$



**Balanced & unbalanced motions** are delineated by the lower frequency boundary of either the local IGW dispersion curve or permissible tides

(Solid white lines denote dispersion curves for the first 10 IGW modes)











