

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Surface Water and Ocean Topography (SWOT) Mission

SWOT Science Team Meeting June 17-20, 2019

The Pixel Cloud Product: Format, Contents and Status

Brent Williams Pixel Cloud Algorithm Developer

Copyright 2019, California Institute of Technology. Government sponsorship acknowledged

Intended Users

PIXC and PIXCVec are expert products, intended users are:

- Hydrologists interested in studying fine-scale details in a local region
 - Higher spatial resolution, but noisier than vector products
 - Users who want to use their own customized algorithms for height reconstruction and geolocation
- Users interested in low level data for calibration/validation and downstream algorithm development
- Possibly other applications around inland water

SWO

- Lowest level of data available that is geolocated
- Studies like Ka-band scattering, rain, ice/snow, soil moisture, urban sprawl, inland water body wind vector/wave height estimation etc...
- The "raster" product can also serve most/many hydrology users that need finer scale measurements than the vector product, but don't need detail and additional complexity of the pixel cloud

L2_HR_PIXC Format

NetCDF format with global attributes and 3 groups

SWOT

- Pixel Cloud (PIXC) group (1D list of kept 2D rare radar-grid pixels)
- TVP group (1D at SLC posting, with larger extent)
 - Sensor information (e.g., spacecraft position, velocity, attitude)
- Noise group (1D at SLC posting, with SLC extent)

1

Pixel Cloud Example

Pixel Cloud Group

- Multiple levels of smoothing
 - Rare and Medium layers on same 'rare' slant-plane grid
 - Well-done layer in PIXCVec product (not PIXC), but on same grid
 - Rare and medium variables are in same group with no explicit tags indicating rare or medium

Time or along-track (azimuth) index

Pixel Cloud Group: Rare Layer

- Rare variables (Note there is no geolocation or height)
 - Grid related items

- Azimuth and range index
- Interferometric measurements
 - Interferogram, 2 channel powers, coherent power)
 - Number of rare looks
- Radiometric calibration terms
 - X-factor for 2 channels
- Water detection/flag items
 - Classification, water fraction, detection rates, water fraction uncertainty
 - Dark/bright land flags, prior water probability
 - Layover impact
- Philosophy of rare layer is to preserve fine scale information
 - e.g., keep everything needed to redo geolocation and recompute much of the medium layer from rare with offline expert/experimental processing

Examples (Rare)

SWOT 🥿

Pixel Cloud Group: Medium Layer

Medium variables

- Geolocation related variables
 - Longitude, latitude, height (wrt ref ellipsoid, not geoid like vector prod.)
 - Cross-track position, pixel area (on ground), incidence angle
- Quality flag

- Variables needed to compute geolocation/height uncertainty
 - Phase noise standard deviation
 - Geolocation/height sensitivities to phase, roll, baseline, and range
 - Sensitivity of pixel area to height
- Illumination time for each pixel
- Phase unwrapping region mask
- Instrument and geophysical corrections
 - Effective height corrections corresponding to instrument and media delay (wet/dry tropo., iono.) corrections that were applied before geolocation (as range/phase corrections)
 - Other geophysical height references that are not applied: geoid, and Earth tides (solid Earth, load, pole tides)
 - Reported but not applied
 - Geophysical surface type flag

Examples (Medium)

SWOT 🚬

- Only the medium layer is geolocated/height reconstructed
- Because of the adaptive averaging, the noise in the medium pixels can be correlated from pixel to pixel
- Uncertainties after aggregation do not simply fall off as 1/sqrt(N)
- PIXC has all the information needed to
 - Optimally aggregate to nodes/lakes/raster bins
 - Estimate height and area uncertainties of the aggregates
 - For the noise- and algorithmic-related components
 - Not necessarily for the systematic components due to errors in the cross-over corrections, or phenomenological uncertainties (existence of layover) etc.
- Optimal aggregation and uncertainty estimation from quantities in the pixel cloud has been implemented and is currently being tested and validated in the context of the rivertile processor

Pixel-wise Height Uncertainties (Random Component)

- Height/lat/lon uncertainties coupled
- 1-sigma error bars are slanted lines in the 3D plots
- Computed by phase noise std x |sensitivities|
- Optimal height aggregation is inverse variance weighting using the height uncertainty

(plots are in slant-plane)

Copyright 2019, California Institute of Technology. Government sponsorship acknowledged

Pixel-wise Area Uncertainties

Estimate of pixel area uncertainty given by sensitivity to height and an estimate of DEM height uncertainty (~10m)

This effect is generally negligible

- Estimate of water area of a given pixel needs to incorporate detection errors and/or water fraction uncertainty etc...
 - Majority of error in water area estimates is due to these

PIXC and PIXCVec: 2 Standard Products

L2_HR_PIXC

- Main PIXC product with1-D list of geolocated radar image grid pixels around water (detected and prior)
- Rare-level interferogram information (4 effective looks)
- Medium-level (~50 looks) geolocated lat/lon/heights and uncertainty estimates
- Water detection and flagging results
- Calibration and sensor info.

SWOT

 Height references and corrections (included but not applied)

L2_HR_PIXCVec

- Ancillary/overlay product contains info. not available until after river and lake vector level processing
- IDs for each pixel that was attributed to any feature (node, reach, lake, unknown ...)
- Height constrained geolocation using aggregated heights at the water feature level (i.e., lat/lon/height for "well-done" level of smoothing)
- Available only after river and lake processors are run (e.g., smooth whole lake to single height)

Phase Unwrapping

- Interferometric phase is precise measure of difference in range between
 point on ground and two radar antennas separated by known baseline
- Phase can only determined modulo 2π radians

- Multiple points in space have same range and interferometric phase; target location is ambiguous
- Target location is geolocated incorrectly if incorrect phase ambiguity is assumed

Phase Unwrapping Errors

Phase is only measured to within a 2-pi ambiguity

Spatially unwrapped over regions

SWO

- For each region, alternative sources are needed to choose which multiple of 2-pi
 - Reference DEM (amb. height ~10m to 60m, near- to far- swath)
 - Prior water mask (1-amb error causes ~750m shift in cross-track location)
- Phase unwrapping errors are rare, but when they happen they can significantly mess up large areas of otherwise good data
 - Whole region is shifted in cross-track and in height (several meters height error and several hundred meters location error)

Status

- PDD in revision based on Science Team reviewer feedback
- ATBD drafted, under internal review among ADT subgroup
 - Most algorithms baselined, but many are likely to be revised
 - Water detection fairly stable only minor revisions expected
 - Actively working on phase unwrapping, dark water flagging
 - Bright land flagging algorithm development is starting up
 - Geophysical corrections and phase screen corrections not yet implemented
- Example data products will be made available

SWOT

- Plan to distribute a PIXC sample product consistent with the river sample products when they are ready

Backup (from 2018 SWOT Science Team)

SWOT

•

Phase Unwrapping Effects and Algorithms

Many algorithms exist for spatial unwrapping to get regions of pixels that are unwrapped correctly relative to each but not absolutely

SWOT

•

- Absolute ambiguity resolution on region basis is unique challenge for SWOT
 - Small ambiguity heights require high vertical accuracy for reference DEM
 - Low coherence over land implies many small regions (harder than few large regions)
 - SWOT algorithm attempts to match measured height to reference DEM and horizontal geolocation to prior water mask
 - Unwrapping error contributors:
 - Reference DEM error
 - Prior water mask error
 - Change in actual water body height, shape, size, or location
 - SWOT height measurement or water detection error

AirSWOT Phase Unwrapping Error Example

AirSWOT Line 20150615005432 (Near Yukon River, Alaska)

SWOT

Grayscale represents radar reflectivity Color represents height (shown with 30 m wrap)

Note: Unwrapping errors will cause larger cross-track shifts (~750 m) and smaller slope errors (~1 m/km) for SWOT than for AirSWOT

Copyright 2019, California Institute of Technology. Government sponsorship acknowledged

Rare Interferogram

SWOT

SLC images are interfered and multi-looked (~spatially averaged)

Lake Hickory, North Carolina

Water Detection

- Power threshold-based binary detection with MRF spatial regularization
- Fractional water estimation

- Dark water flagging base on prior water mask
- Edges/boundaries flagged separately

Medium Interferogram

SWOT

Interferogram adaptively multi-looked using detected classes

Phase Unwrapping

Spatial phase unwrapping over connected regions

SWOT

Ambiguity resolution of each region (using prior DEM and water mask)

Geolocation

 Absolute phase, range, and doppler (azimuth) converted to lat, lon, height above WGS84 ellipsoid

SWOT

ifornia Institute of Technology. Government sponsorship acknowledged

Prune and Create Pixel Cloud

- Exclude pixels not near water (or prior pruning mask)
- Reorder to 1-D list

SWOT

• Include (but don't apply) height corrections, e.g., geoid, Earth tide...

