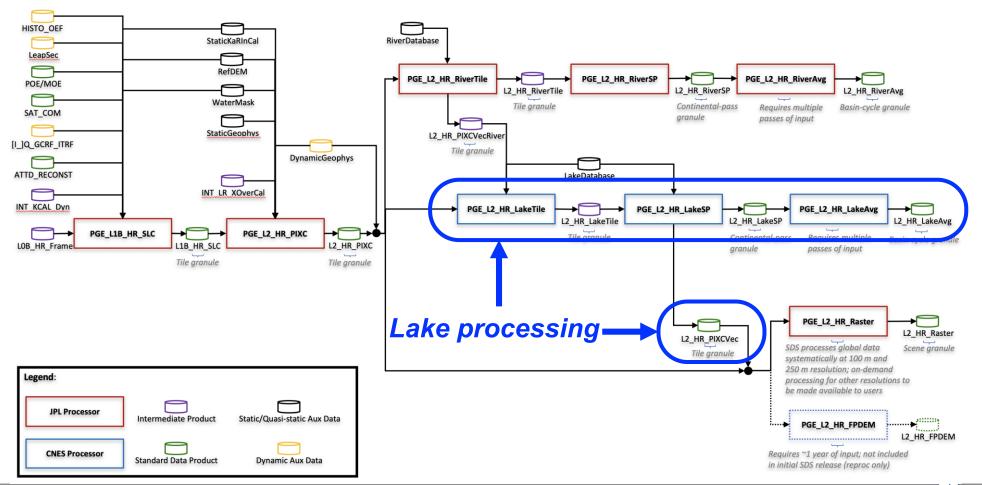
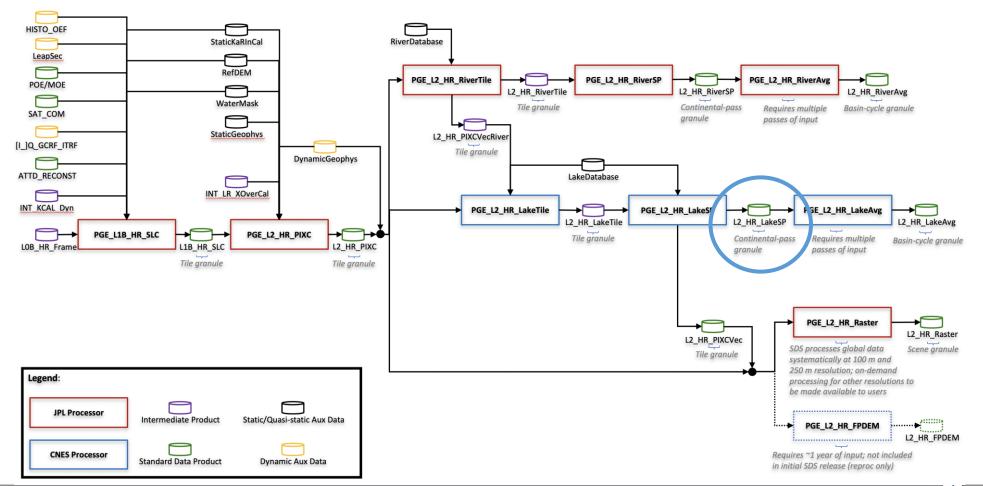


The Lake Single-Pass Data Products: *Format, Content, and Status*

Claire POTTIER, Cécile CAZALS (CS)



SWOT Science Team meeting June 17, 2019



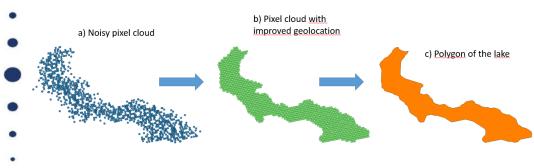
KaRIn HR Processing Flow


KaRIn HR Processing Flow

Format

Esri shapefile

- Classic files + .shp.xml file for metadata
- Filename = SWOT_L2_HR_LakeSP_ <CycleID>_<PassID>_<ContinentID>_ <RangeBeginningDateTime>_ <RangeEndingDateTime>_ <CRID>_<ProductCounter>.<ext>
- Granule: 1 cycle / 1 pass / full-swath / 1 continent
- Continent from HydroBASINS

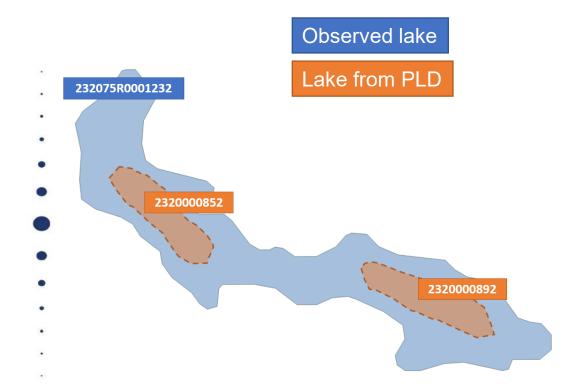

Content

Record

- 1 object = 1 « lake » > 1ha (TBC)
- « lake » = PIXC pixels already processed by River Processor (except reservoirs)
 - lakes and reservoirs identified in the Prior Lake Database (PLD)
 - Iakes not in the PLD
 - small rivers not in Prior River Database (PRD)...

Geometry

Shape = polygon = concave hull of the pixels after improvement of their geolocation

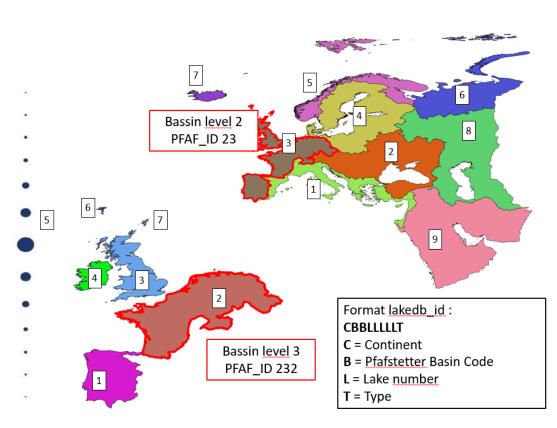


Volume

- ~400MB/pass/continent
 - ✤ ~5GB/day

Identifiers

- Iakeobs_id = CBBTTTSLLLLLT
 - CBB = Pfafstetter basin identifier from HydroBASINS
 - TTT = PIXC tile number
 - S = swath side (right/left)
 - LLLLLL = lake number in the PIXC tile
 - T = type (2=Lake or 3=Lake over river)
- Iakedb_id = list of identifiers of prior lakes intersecting the observed lake
 - > Ex: 2320000852;2320000892



Content

Identifier in the PLD

- Iakedb_id = CBBLLLLLLT
 - CBB = Pfafstetter basin identifier from HydroBASINS (same as for rivers)
 - LLLLLL = lake number
 - T = type (2=Lake or 3=Lake over river)

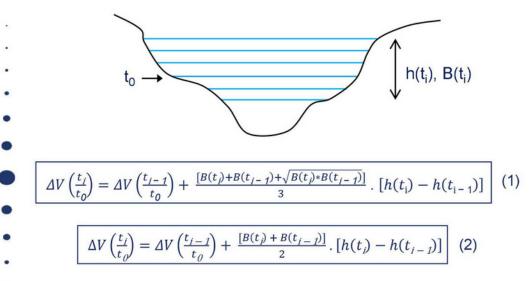
cnes

Time

- time: Time in UTC time scale (seconds since January 1, 2000 00:00:00 UTC which is equivalent to January 1, 2000 00:00:32 TAI),
- time_tai: Time in TAI time scale (seconds since January 1, 2000 00:00:00 TAI, which is equivalent to December 31, 1999 23:59:28 UTC).
- The attribute time has a metadata field named tai_utc_difference, which represents the difference between TAI and UTC (i.e., total number of leap seconds) at the time of the first measurement record in the products granule.
 - time_tai[0] = time[0] + tai_utc_difference

Measured hydrological parameters (1/2)

- **wse**: Average water surface elevation of the lake, relative to the geoid, with all corr. for media delays (wet and dry troposphere, and ionosphere) and tidal effects applied
- wse_u: Total uncertainty (random and systematic) in wse
- wse_r_u: Random-only component of wse_u
- height_std: Standard deviation of the height of all the pixels composing the lake (computed only for large lakes > 5000ha TBC)
- * area_detct: Area of pixels detected as water by the SWOT observations



Measured hydrological parameters (2/2)

- * area_det_u: Total uncertainty (random and systematic) in area_detct,
- * area_total: Total estimated water surface area = area_detct + dark water area (identified through the use of a prior water likelihood map)
- * area_tot_u: Total uncertainty (random and systematic) in area_total
- Iayovr_val: Placeholder for WSE error due to layover (TBD)
- **xtrk_dist**: Distance from of the lake polygon centroid from the spacecraft nadir track (negative = left swath; positive = right swath)

Storage change, computed with 2 different methods [M. Quellec and JF. Crétaux]

- ♦ With respect to reference area and height in the PLD → only for observed lakes associated to 1 or more lake(s) or reservoir(s) in the PLD
- delta_s_Q and ds_u_Q: storage change, and associated uncertainty, computed by the quadratic method (1)
- delta_s_L and ds_u_L: storage change, and associated uncertainty computed by the linear method (2)

(Credits: M. Quellec and JF. Cretaux)

Quality indicators

- **quality_f**: Summary quality indicator. 0=valid, 1=invalid.
- dark_frac: Fraction of the lake total area (area_total) covered by dark water. Ranges bet. 0 and 1.
- ice_clim_f: Climatological ice cover flag indicating. Indicates if the lake is ice-covered on the day of the observation based on climatological ice coverage (not the SWOT measurement). 1=partially ice covered, 2=fully ice covered
- *ice_dyn_f*: Dynamic ice cover flag. Indicates if the lake is ice-covered on the day of the observation based on dynamic ice coverage, determined from analysis of optical satellite data (not the SWOT measurement). Only after reprocessing.
 1=partially ice covered, 2=fully ice covered
- *partial_f*: Flag that indicates partial lake coverage flag.
 0=lake is fully covered by a half-swath,
 1=lake hits the right or left edge of the half-swath (a part of it may be lost)
- xovr_cal_q: Quality of the cross-over calibration (TBD)

12 © cnes

Geophysical references

- second_hght: Lake-averaged geoid model height above the reference ellipsoid (EGM2008)
- **earth_tide**: Lake-averaged solid-Earth tide height (Cartwright/Taylor model)
- **pole_tide**: Geocentric pole tide height
- Ioad_tide1: Geocentric load tide height (FES2014); use to compute wse
- Ioad_tide2: Geocentric load tide height (GOT4.10c)

Geophysical range corrections

- dry_trop_c: Equivalent vertical correction due to dry troposphere delay (from ECMWF model)
- wet_trop_c: Equivalent vertical correction due to wet troposphere delay (from ECMWF model)
- * iono_c: Equivalent vertical correction due to ionosphere delay (GIM)

Instrument correction

* xover_cal_c: Equivalent height correction estimated from KaRIn crossover calibration

Prior Lake Database (PLD) information

- * p_name: Name(s) of the lake, retrieved from Open Street Map, IGN Carthage, GLWD and vMap0 databases
- stand_id: Reservoir identifier from the Global Reservoir and Dam (GRanD) database
- **p_height**: Reference height, used to compute the storage change
- ✤ *p_area*: Reference area, used to compute the storage change

Basics

In HR products (from PIXC), longitudes range between -180° and +180° (contrary to ocean products)

✤ _FillValues:

Data Type	Description fill value	
int4	integer (4 character storage)	-999
int9	integer (9 character storage)	-99999999
float	floating point (13 character storage) -9999999999999	
text	maximum 254 character storage	"no_data"

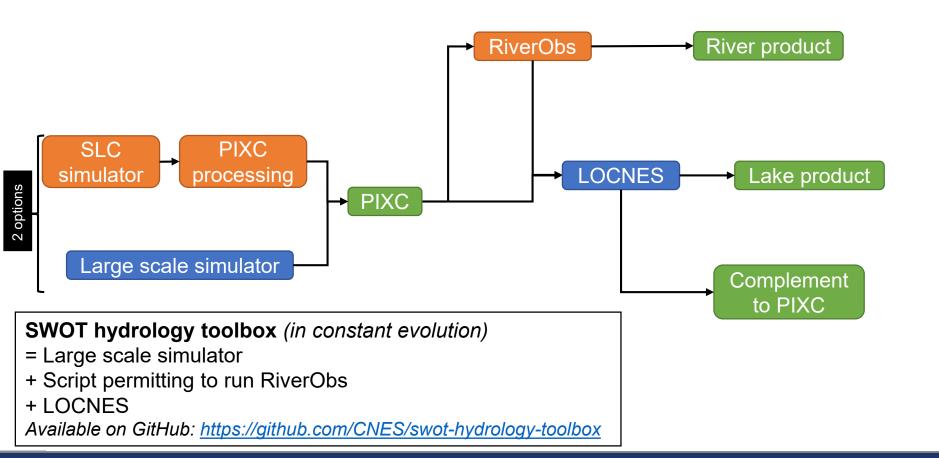
Metadata

Attribute	Format	Description
conventions	string	Esri shapefile: http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
title	string	Level 2 KaRIn high rate lake single pass vector product
institution	string	Name of producing agency.
source	string	SWOT/KaRIn
history	string	UTC time when file generated. Format is: "YYYY-MM-DD hh:mm:ss :
		Creation"
mission_name	string	SWOT
references	string	Provides version number of software generating product.
reference_document	string	SWOT-TN-CMD-0673-CNES
contact	string	Contact information for producer of product. (e.g., "ops@jpl.nasa.gov").
cycle_number	short	Cycle number of the product.
pass_number	short	Pass number of the product.
continent	string	Continent the product belongs to
equator_time	double	UTC time of the first equator crossing in product. Format is <u>YYYY-MM-</u>
		DDThh:mm:ss.sssssz
equator_longitude	double	Longitude of the first equator crossing in product (degrees_east)
<u>start_time</u>	string	UTC time of first measurement. Format is: YYYY-MM-
		DDThh:mm:ss.sssssz
stop_time	string	UTC time of last measurement. Format is: <u>YYYY-MM-</u>
		DDThh:mm:ss.sssssz
xref_input_l2_hr_pixc_files	string	List of water mask pixel cloud files used to generate data in product.
_xref_input_l2_hr_lake_tile_files	string	List of LakeTile products used to generate data in product.
xref static lake db file	string	Name of static lake a priori database file used to generate data in product.
xref_l2_hr_lake_sp_param_file	string	Name of PGE_L2_HR_LakeSP parameter file used to generate data in
		product.
ellipsoid semi major axis	double	Semi-major axis of reference ellipsoid in meters.
ellipsoid flattening	double	Flattening of reference ellipsoid

(+ per attribute as in NetCDF files)

Status

- LakeSP PDD written and under review at JPL and CNES
- Already implemented:
 - > 2 ways to compute the lake boundary (one preferred)
 - UTC time
 - > Basic Water Surface Elevation, standard deviation, detected area, crosstrack distance
 - > Storage change for basic case (1 observed lake \leftrightarrow 1 prior lake)
 - Dark water fraction and partial flag
 - Prior Lake Database information


18) 💿 cner

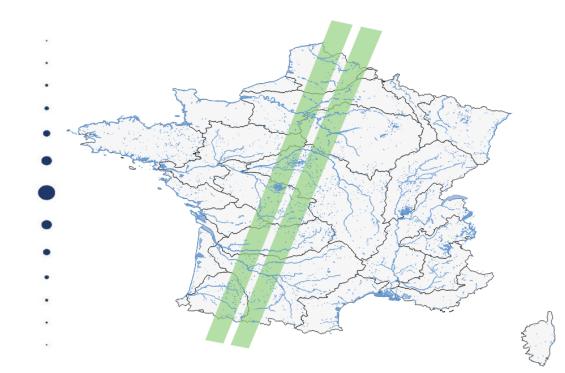
Near-Term Plans

- Release LakeSP PDD along with sample dataset
- Prepare ATBD
- Further improvements:
 - Modify identifiers wrt the new format
 - Selection of pixels to keep for lake processing
 - Modify height computation similarly to RiverObs
 - Integrate random uncertainties attached to hydrological attributes and systematic uncertainty components
 - Storage change: integrate complex case
 - Calculating time (long for very big lakes)
- Set up a complete validation plan with large scale simulations and finer simulations using JPL SLC simulator

Simulations

Simulation over France with SWOT Hydrology Toolbox

IGN Carthage DB


Selection of water bodies corresponding to:

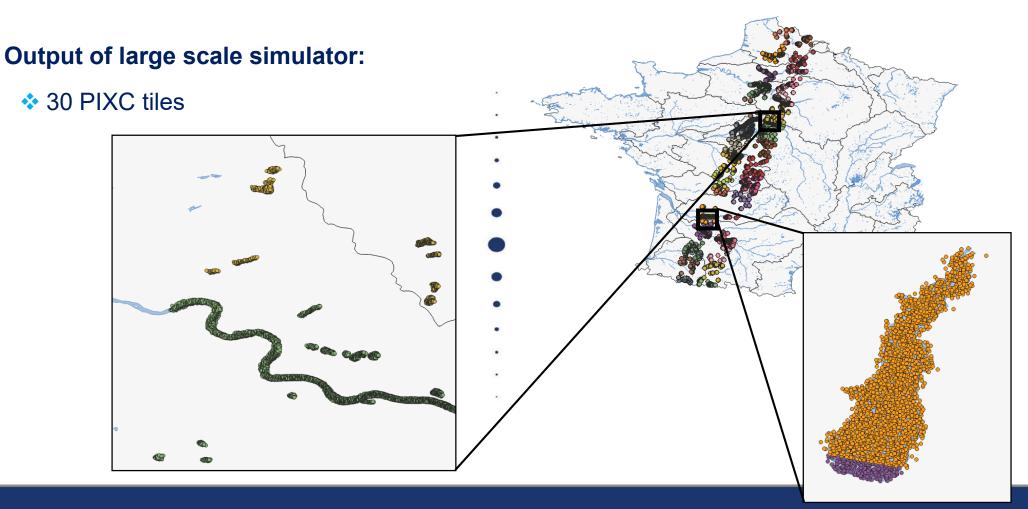
✤ Lakes > 6.25ha

Rivers > 50m

Track number 391

~2400 water bodies observed

Demo (if time for it ;-))


Questions?

Backup slide

Simulation over France with SWOT Hydrology Toolbox

cnes