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Global flood wave (i.e. flow wave)
travel times to basin outlets. The
majority of flood waves reach their
basin outlet withina week.
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Study of how fast flow waves move on
Earth’'s continent help justify shorter
data latency for SWOT hydrology data
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Key Advancements
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New Approach to Quantify Runoff Uncertainty and Propagate
Into River Discharge Uncertainty ?

New River Data Assimilation Approach

. . . . o : Data assimilation
Estimated errors in runoff Estimated errors in  Actual errors in river flow: enabled by knowledge

(from land surface model) river flow (from observations) : of model uncertainty
(from river model) o _
* New description of error propagation

from land to rivers
« Better knowledge of river flow errors
« First estimates of land runoff errors
 Revealed critical error covariances

« New river data assimilation
4




Global Best-quality High-res River Modeling (Pl: Wood/Pan, Princeton)

m Key Advancements
Global River Network Based on MERIT DEM

New Global High-Resolution River Discharge Model to Assess,
Use or Improve SWOT Discharges
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Near Real-Time ... (@ >14,000 gauges)
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Using Landsat as a template for SW

Gleason et al. “Missouri River Application”

Princeton

discharge |—| K
Key Advancements —

SWOT-like River Discharge Algorithm Based on LandSat B

New SWOT-like Discharge Assimilation Approach Provides
Network-Wide Discharges and Improves River Discharge
Estimates

mard in NSE
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Orbit geometry issues 4
Cloud/environmental issues
Most rivers too small to see

Mass conservation issues

Mean improvement in NSE is 0.1
Validated across 403 gauges, daily, for 2002-2010
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Recent Advances in Global Hydrology Modeling at CNRM, Météo-France

S. Munier, M. Lesaffre, S. Saysset, T. Guinaldo, A. Boone, P. Le Moigne (CNRM - Météo-France, CNRS)

1. River rnuting 2. Lakes water mass balance
Development of CTRIP-12D, river routing model @ 1/12° to Development of a water mass balance in lakes (MLake)
simulate river discharge, flood dynamics, and water storage to represent water dynamics of lakes at the global scale

changes in aquifers
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3. Assimilation of altimetry data 4. Dam reservoirs and water resource ma nagement
Into river routing model, based on the work of Emery et al,, 2018; To assess the impact of dam operations on discharge propagation
assimilation of water levels from ENVISAT and JASOMN-2 data info into the routing network.
CTRIF aver the Amazan basin. Will benefit from CTRIP-12D and MLake models to develop a

dam-resenvoirs modal, A PhD (funded by CHES) next Autumn fo
- improve river flow modeling with integration of dam-resenvairs
I madel and the assimilation of altimetry data (SWOT
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Variance based sensitivity analysis of FLake lake model for global land surface modeling
A. Bernus, C. Ottle, LSCE-IPSL, France

Objective: Develop a representation of lakes in the ORCHIDEE-LMDZ climate model constrained by SWOT observations
First step: Representation of the energy budgets

Approach: - Coupling with FLake lake model to calculate surface temperature and fluxes (evaporation)
- Inventory of lake databases to characterize lakes at global scales
- Perform model global sensitivity analysis (SA) to identify dominant parameters and their time variability
- Develop data assimilation strategies to calibrate/constrain model parameters

Albedo o SA results: - Depth and Extinction coeff. dominant parameters for shallow lakes
&~ - Albedo and Relaxation coeff. dominant for deeper lakes
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Generalized Sobol indices measure T, sensitivity to each parameler during one year
7 parameters: depth, albedo,  Sensitivity of depth/radiative parameters vary with incoming radiative forcing (the larger the
extinction coeff., fetch, relaxation radiation, the larger the sensitivity of albedo/extinction parameters)
coeff., sediment layer depth and = Results will drive the choice of both data assimilation method and
bottom temperature time periods used in the optimization process




Retrieving baseflow of large rivers from space with the
future SWOT mission
Nicolas Flipo, Fulvia Baratelli, Sylvain Biancamaria, Agnés Riviére
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SWOT will provide uncertain river discharge at global scale

Baseflow is retrieved by filtering SWOT-like river discharge: good accuracy over Seine basin
Uncertainties on baseflow estimates are always slightly lower than those on discharge
SWOT will potentially provide baseflow estimates with unprecedented global coverage
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