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• Compute rotary components, tidal ellipses
• Expand domain
• Use SCCOOS stratification data to evaluate impact 

on tidal modulation

• We have developed a tidal analysis routine specialized for time 
series with tidal constituents that are relatively weak compared to 
their low-frequency, non-tidal components. This is an 
improvement over classical tidal harmonic analysis, such as that 
used in the well known t_tide package [4]. This routine is 
executed by the software package red_tide, named for its 
handling of spectrally red non-tidal signals. Notably, for weak 
tides, red_tide converges to tidal amplitude estimates over 
shorter record lengths than t_tide does.

Background
• Classical tidal harmonic analysis has a long history of use in the 

field of tidal prediction [3][7]. Classical tidal harmonic analysis has 
well-known drawbacks [4], such as nodal modulations and 
limitations on frequency resolution. Nevertheless it has been 
widely adopted due to the relatively deterministic nature of tides, 
for which this method is suitable. Adjustments to the technique 
have been implemented, notably by Pawlowicz et al. [4] in the 
t_tide package, which correct for limitations of short time 
series and interference by tidal-frequency signals of incoherent 
origin.

• Nevertheless, weak tidal signals and/or relatively strong non-tidal 
components are difficult to describe with conventional tidal 
harmonic analysis, e.g. baroclinic tides.

Methods (continued)
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Methods
• Harmonic analysis of select tidal constituents (e.g. O1, M2, S2, 

etc.) and non-tidal frequencies, including low, non-tidal 
frequencies < O(1) cpd.

• Model weights are the Bayesian maximum a posteriori estimate 
assuming linear and Gaussian statistics.
Model [5]:

𝐲 = 𝐇𝐱 + 𝐫
y = observations
H = model basis functions
x = amplitudes
r = unmodeled residual signal

𝐱 ≈ (𝐱 = 𝐇)𝐑+𝟏𝐇 + 𝐏+𝟏 +.𝐇)𝐑+𝟏𝐲

𝐑 = ⟨𝐫𝐫)⟩
𝐏 = ⟨𝐱𝐱)⟩

Relevance to SWOT
• SWOT will detect small-scale signals driven by tides, surface waves, 

and internal waves. We aim to build the modeling and assimilation 
capabilities to resolve these processes.

• Analysis of coastal high-frequency radar (HFR) surface current data 
in the California Current System (CCS), a SWOT cal/val region, has 
led to the development of a flexible tidal analysis package 
red_tide [2], designed for non-stationary and/or weak tidal 
signals with a spectrally red background field.

• Approximately 25% of baroclinic tidal SSH variance is non-
stationary [6], marked by time-varying modulations to amplitude or 
phase. Therefore, high-wavenumber observations by SWOT may 
contain substantial non-stationary tidal energy for which such 
analysis is advantageous.

• R is assumed constant (uncorrelated, stationary noise) due to 
computational constraints of inverting non-diagonal matrices.

• P is prior guess for model, diagonal for computational efficiency. 
Model is a Fourier decomposition, thus P is described by the 
power spectrum of y:

𝐏 = 𝐒𝐲𝐲 𝑓3456765 Δ𝑓

• Parseval’s theorem dictates energy conservation between 
physical and Fourier domains, so energy at unmodeled 
frequencies can dictate R:

𝐑 = Δ𝑓 ∑ 𝐒𝐲𝐲 𝑓:;3456765

• R sets the signal-to-noise allowance for model weights, and may 
be chosen freely. It accounts automatically for representation 
error (unmodeled energy) and can also be adjusted to account 
for expected observation error.

• Model dispersion about truth is an estimate for uncertainty of (𝐱:

𝐱 − (𝐱 𝐱 − (𝐱 ) = 𝐇)𝐑+𝟏𝐇 + 𝐏+𝟏 +.

• Artificial time series are constructed from the inverse Fourier 
transform of idealized quasi-tidal spectra, with a phase randomly 
assigned to each frequency (figure 1).
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• Compute rotary components, tidal ellipses
• Expand domain
• Use SCCOOS stratification data to evaluate impact 

on tidal modulation

Results

• Analyzing a subset of artificial records, not necessarily at true 
constituent frequencies, results in ambiguity (figure 3), because 
the shorter record results in the prescribed frequencies not 
aligning exactly with those of the true parent spectrum. This 
mimics real data, which has energy at all frequencies but can 
only be modeled on a finite basis.

• Analyzing artificial records at their prescribed frequencies 
reconstructs constituents, with minor inaccuracy due to the 
unmodeled allowance (figure 2). Uncertainty intervals do not 
depend on data, but rather on model assumptions and 
orthogonality of model basis functions.

Figure 1. Simplified example of synthetic spectra and corresponding 
random phase time series used to evaluate red_tide.

Figure 2. Synthetic spectrum (arbitrary units) and partial reconstruction 
using red_tide, where every frequency modeled in H was also used to 
construct y. The power spectral estimate of y (here in red) was used to 
calculate the model prior covariance estimate P and the error covariance R.

Figure 3. Analogous to figure 2, but with only half the record analyzed, thus 
not all modeled frequencies are true constituents of y. The prior estimate 
of fractional residual variance is 𝐑/var 𝐲 ≈ 0.1, while the calculated 
fraction of residual variance of the model is var 𝐲 − 𝐇𝐱 /var 𝐲 ≈ 0.05. 
The estimates are distributed about the true spectrum roughly as 
expected, and the tidal peak is correctly estimated to be roughly two 
orders of magnitude stronger than the background.

Results (continued)

Effect of record length on accuracy
• By prescribing the exact spectral characteristics of random phase 

time series, the sensitivity of constituent estimates to various 
constraints can be examined. An hourly, 46 month-long pseudo-
tidal process with three relatively weak tides, tidal modulation, 
and a strong background of red spectral slope (∝ 𝜔+G) is 
modeled at a set of low frequencies as well as narrow tidal 
bands about the constituents (figure 4).

• The diurnal component is smaller than, but still comparable to, 
the non-tidal background, whereas the semidiurnal components, 
while still prominent, are much less energetic than the lowest 
modeled frequencies. For 500 Monte Carlo simulations (figure 5), 
the pseudo-S1 is modeled similarly by both red_tide and 
t_tide, though the latter underestimates amplitude when 
analyzing longer record lengths.

• The pseudo-M2 and pseudo-S2 (not shown) amplitudes are 
consistently overestimated by both methods, but there is much 
greater consistency between analyses of short and long 
segments of time series. Overestimation may be due to 
insufficient near-tidal frequencies being modeled.

• t_tide’s decrease of amplitude with record length therefore 
appears to be an artifact of the tidal analysis method. The 
observed decrease of tidal amplitudes in HYCOM output 
analyzed by Ansong et al. [1] may, therefore, not be the result of 
the circulation model but rather the tidal analysis.

Figure 4. Partition of the true power spectrum into modeled (red) and 
unmodeled (white) bands, as performed by red_tide. Red bands are 
modeled explicitly by Hx, and white signifies energy implicitly modeled as 
uncorrelated noise (or in the case of the lowest frequencies, a trend).

Figure 5. S1 (top) and M2 (bottom) as modeled by red_tide (left) and 
t_tide (right) over 500 Monte Carlo simulations (box and whisker plots 
are quartiles, red dots are outliers, mean and amplitude are labeled). 
Convergence for the weaker M2 signal appears to occur for shorter 
segments, which demonstrates the strength of this method: the prior 
information about the system’s more energetic low-frequency band 
enforces variance to be partitioned approximately according to P. This 
allows shorter records to yield amplitude estimates similar to those of 
longer records.

• Classical harmonic analysis, including t_tide, employs a similar 
least-squares method, which does not include the prior statistical 
assumptions (P and R) used above:

(𝐱′ = 𝐇)𝐇
+.
𝐇)𝐲

Conclusion
• We have developed a software package red_tide, 

soon to be publicly available for use and improvement 
on GitHub at https://github.com/lkach/red_tide, which 
is intended to be used for oceanographic data with a 
strong, spectrally red background.

• Many processes in the ocean are not as strongly 
dominated by the barotropic tide as tide-gauge SSH, 
therefore red_tide may be preferable to t_tide in 
these cases. red_tide should also perform better on 
short time series, because its fitting scheme can 
account explicitly and realistically for frequencies lower 
than the fundamental frequency.

• SWOT will observe submesoscale processes for which 
non-stationary tides may be important, and it will also 
heavily alias them. Unlike the highly deterministic 
barotropic tide, the non-stationary component cannot 
be trivially removed. Understanding this component 
from in situ observations will be valuable for 
interpreting SWOT measurements.This work is supported by NASA award NNX16AH67G for the SWOT Science Team

HFR Data provided by the Southern California Coastal Ocean Observing System (SCCOOS) of NOAA’s Integrated Ocean Observing System (IOOS), available at 
http://hfrnet-tds.ucsd.edu/thredds/catalog.html
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https://github.com/lkach/red_tide


Additional work
• The basis functions in H are not required to be sinusoidal. An 

autoregressive model for modeling the non-tidal signals has been 
implemented to estimate background spectral slope (not shown).

• For time series that are expected to be forced by a different 
observable process (e.g. wind-driven currents), the response can 
be modeled as impulsive.

• Basis functions in H are not required to be orthogonal; associated 
uncertainty accounts for resulting ambiguity.

• Analysis of HFR 
surface current data 
using these methods 
has yielded 
information about 
the energy and 
phase structure of 
tidal currents in the 
California Current 
System (meridional 
M2 velocity phase, 
right).


