Leveraging kilometric resolution ensemble simulations for studying ocean predictability and energy transfers

Introduction

- Some background on (ocean) ensemble simulations:
 - A tool to analyse turbulent dynamics in the context of time varying forcing
 - Produce multiples, equi-valide realizations of ocean circulation

Decorrelation of two ensemble members (surface relative vorticity, [s⁻¹])

- <u>Short-term predictability</u>:
 - How long is a deterministic prediction 'valid'?
 - Sources of forecast errors:
 - Initial Conditions (IC)
 - Model errors
- Energy transfers:
 - An unambiguous definition of 'eddies'
 - Spatio-temporal structure of eddy-mean flow interactions

Methods

- Model and simulation:
 - MEDWEST60 ; NEMO v3.6, 1/60° (Δx~1.5 km), 212 vert. levels (1-25 m)
 - Forced by:
 - atmospheric forcing (3-hourly ERA-Interim, ECMWF) and tidal potential
 - eNATL60-BLBT02 model state [Brodeau et al., 2020] at the boundaries
 - Initial conditions:
 - spun-up (25 months) eNATL60-BLBT02 model state at February, 5th 2010

ENS-CI	 Initial condition uncertainties Deterministic model 120 days long 				
ENS-1%	- <i>Small</i> model errors (1%) uncertainties - Stochastic model - 60 days long				
ENS-5%	 Large model errors (5%) uncertainties Stochastic models 60 days long 				

- 20-member ensembles
- ALL exposed to the same forcing ! (surface and boundary conditions)

How regional ensemble simulations could be used to interpret/exploit SWOT observations?

Short-term predictability

How long is a deterministic prediction 'valid' (ENS-CI)?

Forecast errors

• Compute inter-members 'errors' and estimate their spatial scale

Forecast score

 Example for SST: 10-km accurate 10-day forecast → 1.4 km accurate ICs

Short-term predictability

• How long is a deterministic prediction 'valid' (ENS-CI)?

Target forecast score	1 day	2 days	5 days	10 days	15 days	20 days
2 km	1.6 km	1.4 km				
5 km	3.9 km	3.1 km	1.4 km		—	
10 km	7.9 km	6.2 km	4.4 km	1.4 km		
15 km	11.7 km	10.4 km	6.3 km	3.1 km	1.4 km	
20 km	16.2 km	14.9 km	10.5 km	5.4 km	2.3 km	1.4 km

Initial location accuracy required (location score, in km) to obtain the target final location accuracy (location score in km, left column) with a 95% confidence for different forecast time lags

Inform on necessary accuracy in observations to achieve specific targeted forecast skills

Energy transfers

- Decorrelation of the turbulent flow (ENS-CI)
 - Time scale for EKE initial growth: < 1 week
 - Time scale for EKE 'saturation': ~80 days

Energy transfers

- Eddy-mean transfers are largely non-local at small scales:
 - Involve turbulent fluxes of the **cross-energy** term $\rightarrow \nabla \langle u' (u'_h, \langle u_h \rangle) \rangle$
 - Horizontal constraint on eddy-mean flow KE transfers →

Vertically integrated MEC, EDDYFLX and DIVEF after 60 days of simulations

7

 $\boldsymbol{u'}_h \langle \boldsymbol{u}_h \rangle = 0$ for $\boldsymbol{u'}_h \perp \langle \boldsymbol{u}_h \rangle$

Conclusions

• <u>Short-term predictability:</u>

- Introduced a probabilistic approach based on **ensemble simulations**
- Quantify the accuracy of observations and models needed to achieve targeted forecast skills
- The necessary conditions can be translated into useful guidance information to design future ocean observing system
- Energy transfers:
 - **Spatio-temporal structure** of eddy-mean flow interactions in the context of **time varying forcing**
 - How to treat observations *wrt* ensemble simulations?
 - \rightarrow Need a robust comparison between ensemble vs. time/spatial filtering
 - → Can we treat **observations as an additional ensemble member** and quantify their statistics?

Exploitation of ensemble simulations at medwest cross-over in the context of BIO-SWOT

Thank you!

- MEDWEST60 web page:
 - https://github.com/ocean-next/MEDWEST60
- <u>Related papers</u>:
 - Leroux, S., Brankart, J. M., Albert, A., Brodeau, L., Molines, J. M., Jamet, Q., Le Sommer, J., Penduff, T. & Brasseur, P. (2022). Ensemble quantification of short-term predictability of the ocean dynamics at kil ometric-scale resolution: A Western Mediter
 - Jamet, Q., Leroux, S., Dewar, W. K., Penduff, T., Le Sommer, J., Molines, J. M., & Gula, J. (In Rev). No n-local eddy-mean kinetic energy transfers in submesoscale-permitting ensemble simulations, ournal of Advances in Modeling Earth Systems

- <u>Sources of forecast errors</u>:
 - Initial conditions vs. model uncertainties
 - >1% model uncertainties dominates over Initial Conditions

- Eddy-mean flow kinetic energy transfers:
 - Local at large scale (>1°)
 - Strongly non-local at small scale (<1/4°)
 - Quantify the time integrated contribution of eddy-mean KE transfers

$$\partial_t MKE = \dots - \langle \boldsymbol{u}_h \rangle \cdot \nabla \cdot \langle \boldsymbol{u}' \boldsymbol{u}_h' \rangle \\ \partial_t EKE = \dots - \langle \boldsymbol{u}' \boldsymbol{u}_h' \rangle \cdot \nabla \langle \boldsymbol{u}_h \rangle$$

Time series (left) and time integrated contribution (right) of MEC, EDDYFLX and DIVEF volume integrated within the Algerian Current region

- Non-local interactions have important implications for the development of robust parametrizations [Grooms 2013, 2017]
- We want to find a dynamically consistent solution for the buoyancy equation:

$$\partial_t \overline{b} + \nabla \cdot \overline{u} \overline{b} = \overline{Q} - \nabla \cdot \overline{u'b'}$$

where the eddy term needs to be parametrized

 Gent and McWilliams (1990) proposed to model this as (with K a prescribed constant value):

$$K \stackrel{\text{\tiny def}}{=} L \sqrt{\overline{e}}$$

• Need to solve a prognostic equation for the sub-grid scale kinetic energy:

$$\overline{d}_{t}\overline{e} = -\nabla \cdot \overline{u'e} - \nabla \cdot \overline{u'p'} + \overline{w'b'} - \epsilon - \overline{u'u'_{h}} \cdot \nabla \overline{u_{h}}$$

 $\overline{u'b'} \stackrel{\text{\tiny def}}{=} K \nabla_{h} \overline{b}$

Eddy-mean flow interactions

- Basin integrated EKE budget, a **balance** between:
 - eddy-mean flow interactions
 - exchanges with eddy potential energy
 - dissipation

$$\partial_t \int_V \langle e \rangle \ dV = \rho_0 \int_V \langle u'u'_h \rangle \cdot \nabla \langle u_h \rangle \ dV + \int_V \langle w'b' \rangle \ dV - \int_V \epsilon \ dV$$

$$\partial_t \langle X \rangle = \dots - \nabla \cdot \langle u' X' \rangle$$

• Eddy-mean flow interactions are *local* within the basin:

 $^{-1}$

-2

$$\int_{V} \langle \nabla . \langle u'(u'_{h}, \langle u_{h} \rangle) \rangle = \langle u_{h} \rangle \cdot \nabla . \langle u'u'_{h} \rangle + \langle u'u_{h} \rangle \cdot \nabla \langle u_{h} \rangle dV = 0$$

 $-\rho_0 \int \langle \mathbf{u}_h \rangle \cdot \nabla \cdot (\mathbf{u}' \otimes \mathbf{u}_h') dV$ $-\rho_0 \int (\mathbf{u}' \otimes \mathbf{u}_h') \cdot \nabla \langle \mathbf{u}_h \rangle dV$

 $-\rho_0 \int \nabla \cdot \mathbf{u}'(\langle \mathbf{u}_h \rangle \cdot \mathbf{u}'_h) dV$

15

20

10

Ensemble member

5