

Can mesoscale eddy kinetic energy sources and sinks be inferred from sea surface height in the Agulhas Current?

Pauline Tedesco^(1,2)

Jonathan Gula^(2,3), Pierrick Penven⁽²⁾, Claire Ménesguen⁽²⁾, Quentin Jamet⁽⁴⁾, Clément Vic⁽²⁾

(2) LOPS

⁽¹⁾ Imperial College of London ⁽³⁾ Institut Universitaire de France ⁽⁴⁾ Institut des Géosciences de l'Environnement

Institut des Géosciences de l'Environnement

Mesoscale eddies represent a key reservoir for the global ocean energy budget (90 % of the surface Kinetic Energy) (Wunsch et al. 2007, Ferrari and Wunsch, 2009)

Planetary scale *O*(10³-10⁴) km

Mesoscale *O*(10² - 10) km

Scheme inspired from McWilliams et al. (2016)

Microscale *O*(1) mm

Submesoscale *O*(10 - 10⁻²) km

Mesoscale eddies generation is well documented, but how they dissipate their energy remains uncertain

Planetary scale *O*(10³-10⁴) km

Mesoscale *O*(10² - 10) km

0

Scheme inspired from McWilliams et al. (2016)

Submesoscale	Microso
<i>O</i> (10 - 10 ⁻²) km	<i>O</i> (1) n
	Submesoscale O(10 - 10 ⁻²) km

Topographic interactions play a significant role at channeling direct EKE routes, down to dissipation (Wunsch et al. 2007, Ferrari and Wunsch, 2009)

Planetary scale O(10³-10⁴) km

Scheme inspired from McWilliams et al. (2016)

Context - Western boundaries as hotspots for mesoscale EKE decay ?

Based on satellite altimetry data (SSH), a closure to mesoscale eddies lifecycle has been suggested (Zhai et al. 2010)

• Mesoscale eddies are generated almost everywhere, propagate westward and decay at western boundaries due to topographic interactions

An SSH-based eddy kinetic energy (EKE) flux divergence highlights net EKE sinks (< 0) at western boundaries

SSH-based EKE flux divergence (Zhai et al., 2010)

6

Motivation - Contrasted altimetry- and model-based paradigms

In the Agulhas Current, SSH- and model-based EKE flux divergence support different paradigms

Net EKE sink (< 0) : Local EKE decay dominates

Net EKE source (> 0) : Local EKE generation dominates

Ź

Motivation - Contrasted altimetry- and model-based paradigms

The use of SSH to infer the EKE flux divergence requires approximations

$$\nabla_{H} \cdot \int_{-H}^{\eta} \mathbf{u'}_{n}$$
Eddy-pressur

- Is EPW_{(i,ii,iii}) a reliable approximation of the true EPW?

• EPW_(i,ii,iii) corresponds to linear EKE flux driven by the β -effect acting on the 1st baroclinic mode

Results - Impacts of approximations on the eddy-pressure work (EPW)

Is EPW_{(i,ii,iii}) a reliable approximation of the true EPW?

- mesoscale EPW using 1st baroclinic mode
- no EKE flux-topographic interactions

- mesoscale EPW using barotropic + 1st baroclinic modes
- no EKE flux-topographic interactions

• EPW_(i,iii): Barotropic (-0.51 GW) and 1st baroclinic mode (-0.30 GW) have significant contributions to the SSH-based EPW

Results - Impacts of approximations on the eddy-pressure work (EPW)

Is EPW_(i,ii,iii) a reliable approximation of the true EPW ?

- mesoscale EPW using

- EPW_(i,iii): Barotropic (-0.51 GW) and 1st baroclinic mode (-0.30 GW) have significant contributions to the SSH-based EPW
- EPW_(i) : EKE flux-topographic interactions are not weak

Results - Impacts of approximations on the eddy-pressure work (EPW)

Approximations (ii) and (iii) impact SSH-based EPW, but support WB as a net EKE sink

- mesoscale EPW using barotropic + 1st baroclinic modes
- EKE flux-topographic interactions
- geostrophic velocities

Approximations (i) of geostrophy is the last possible reason for the different paradigms

Results - Main contributions to the eddy-pressure work (EPW)

• In the WB region, mesoscale eddies are mainly geostrophic (Ro = O(0.02 - 0.07))

• However, a scale analysis shows that the ageostrophic EPW dominates the β -contribution

$$\frac{EPW_{ag}}{EPW_{(i,ii,iii)}} \sim \frac{L_{cross-over}}{L}, \text{ with } L_{cross-over}$$
In the WB region, $\frac{L_{cross-over}}{Rd} > 1$

It questions the use of SSH to infer the true mesoscale EPW in the WB region

SSH-based paradigm relies on the β -effect being the main contribution to the mesoscale EPW (Zhai et al. 2010)

Results - Main contributions to the advection of EKE (AEKE)

The use of altimetry data (SSH) to infer the EKE flux divergence requires approximations

EKE flux divergence

$$\nabla_H \cdot \int_{-H}^{\eta} \mathbf{u}'_{nH}$$

Eddy-pressure work

- modes
- Is AEKE_(i) a reliable approximation of the true AEKE ?

• AEKE_(i) corresponds to advection done by geostrophic EKE flux of the barotropic and 1st baroclinic

Results - Main contributions to the advection of EKE (AEKE)

Is AEKE_(i) a reliable approximation of the true AEKE ?

Approximations (i) of geostrophy is valid for AEKE (via the work of eddy-total flow interactions)

- EKE flux divergence is dominated by advection done by geostrophic EKE flux (AEKE) • EKE flux divergence can be qualitatively inferred using SSH (up to 54 % in the WB region)

- Our results support a dynamics in contrast with the decay's paradigm at western boundaries : • Local generation of eddies, by instabilities of the Agulhas Current, overcomes the local decay due to topographic interactions
- EKE flux divergence is sensitive to regional dynamics

Our results are favorable to SSH-based diagnostics :

