Mean Sea Surface (MSS) for SWOT

SIO
David Sandwell
Yao Yu
Hugh Harper

CLS/CNES
Philippe Schaeffer
Yannice Faugere
Isabelle Pujol
Gerald Dibarboure
Nicolas Picot

Ole Andersen
Per Knudsen
Adeli Abulaitijiang
Shengjun Zhang

NOAA Eric Leuliette Walter Smith

- Need high resolution MSS for CAL/VAL early in the mission.
- MSS should have long wavelength accuracy from multidecadal repeattrack altimetry (ERM) and short wavelength precision from geodetic mission (GM) phases.
- MSS should vary with time as sea level rises.

MSS(time) for SWOT

MSS(t) = high spatial resolution MSS

+ low spatial resolution MSS (t)

Three groups working on MSS(t) for SWOT:

- 1) CLS constructs MSS2022 = MSS CNES_CLS2021 plus MSS LEADS in Arctic area.
- 2) SIO adds short wavelength MSS from double retracked SSS data.
- 3) DTU develops independent MSS (DTU21), with Arctic focus, and adds lower spatial resolution MSS(t).

MSS(time) for SWOT

Three presentations:

- High spatial resolution MSS (Sandwell US; Schaeffer EU)
- Assessment of errors in MSS models (Schaeffer)
- Adding long-wavelength, time dependent MSS (Andersen)

- Discussion:

- How important is adding MSS(t)?
- Would a mean sea surface slope model be useful (along- and cross-track slope)?
- Does one the MSS need to be embedded in the SWOT product?
- Will SWOT measure the nadir SSH or the closest reflection SSH?

High Resolution Mean Sea Surface for SWOT

Philippe Schaeffer – CLS
David Sandwell – SIO
Isabelle Pujol – CLS
Ole Andersen – DTU

Improve the shortest wavelengths using Hight Resolution data

- Goal is to improve wavelengths < 50 km
- Use of GM and drifting data, especially C2 & AltiKa filtered at 5 Hz (~1,4 km along track)

Collaborative analysis between CLS & Scripps

HR MSS determination => 2 ways : 2 different dataset and 2 mapping methods are used !

CLS (first step) Removing oceanic variability

Scripps(second step) Improving Short wavelengths

Mean Profiles = all ERM Missions (TP/J1/J2/J3 (& interleave), E2/En/Aka, GFO)

HR Data

Integration of: C2 + AltiKa: one pass RTK + 5Hz

filtering

S3 => for validation

Observation

SSH - MSLA DUACS

Mapping

Optimal interpolation + noises budget (white & correlated) + noise optimal filtering

Based on CNES CLS MSS for $\lambda > 100 \text{ Km}$

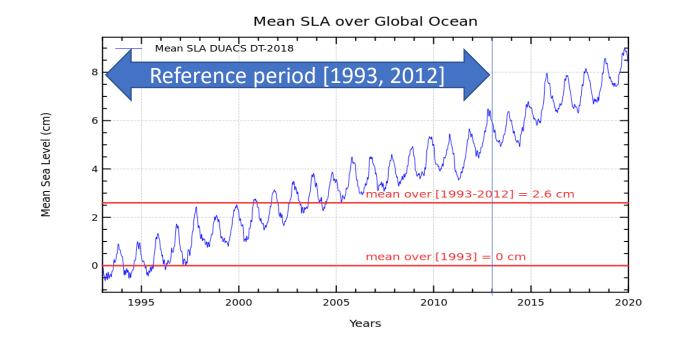
HR Data

Integration of: Geosat/J1/J2/En + C2 + AltiKa + S3 : two-

pass RTK + 5 Hz filtering

Observation

SLOPE combined with **HEIGTH**


Mapping

Biharmonic splines in tension

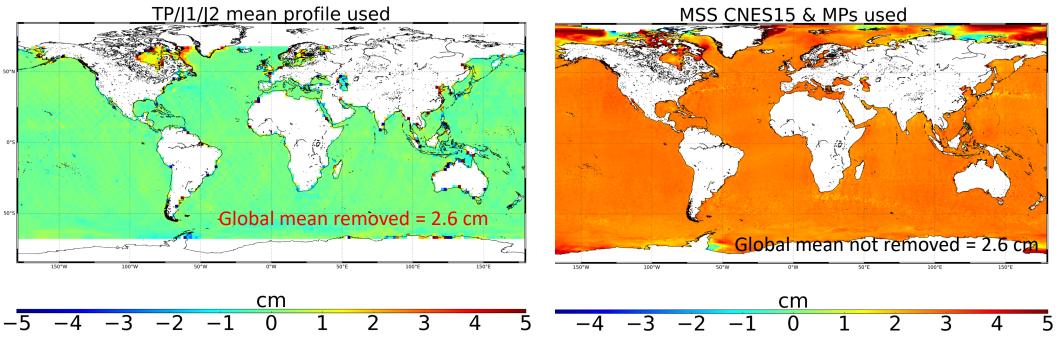
SSH – MSLA DUACS: the treatment of the oceanic variability

- ➤ MSS CLS construction characteristics => correct each observation for oceanic variability by space-time interpolation of SLA (Map of SLA DUACS = 1 map /day)
 - 1. Remove (large and meso-scale) seasonal and interannual oceanic variability
 - 2. Remove Sea Level Trend (referenced at an arbitrary time / mid-1993)
 - 3. obtain an optimal compromise between mean oceanic content and high-resolution topographic structures
- Provided by Mean Profiles (1Hz)
 - Provided by C2 & AltiKa

goal is to converge towards the "steady state" of the ocean

- DUACS uses the 20y reference period [1993, 2012]
- DUACS convention : $\langle SLA_{20y} \rangle_{1993} = 0$
- < SLA_{20y} >_{20y} = Cst value that represents of the MSL increase over the 20y reference period
- Mean SLA over the reference period should be close to 0 (or constant value for DUACS convention) ≈ "steady state"

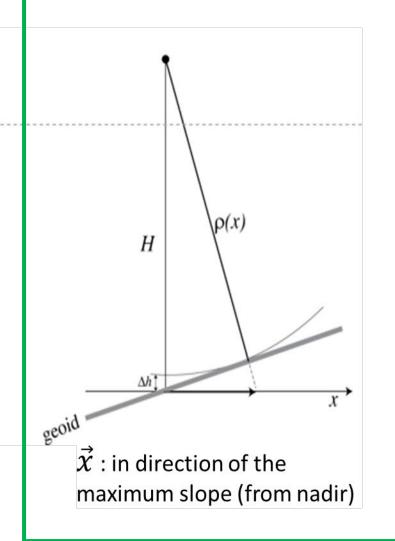
SSH – MSLA DUACS: the treatment of the oceanic variability

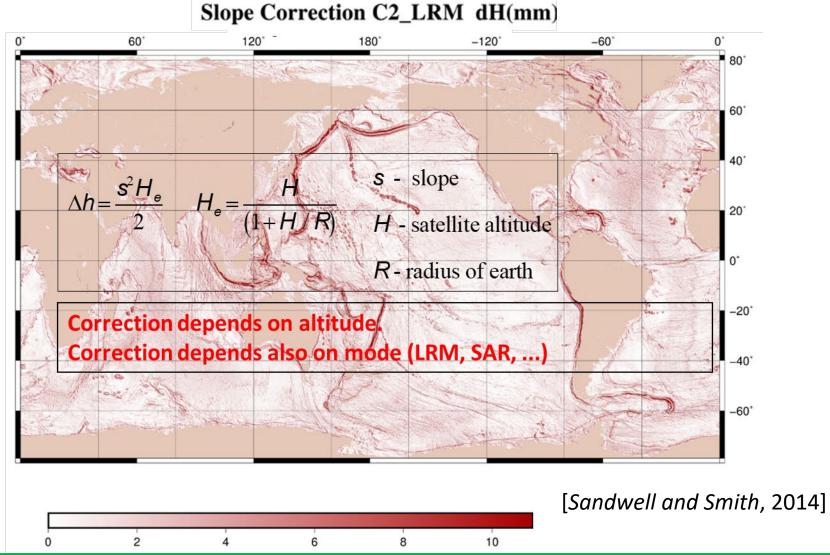

Mean SLA over the reference period should be close to 0 (or constant value for DUACS convention)

Boxed mean SLA TP/J1/J2 over the MSS reference period [1993, 2012]

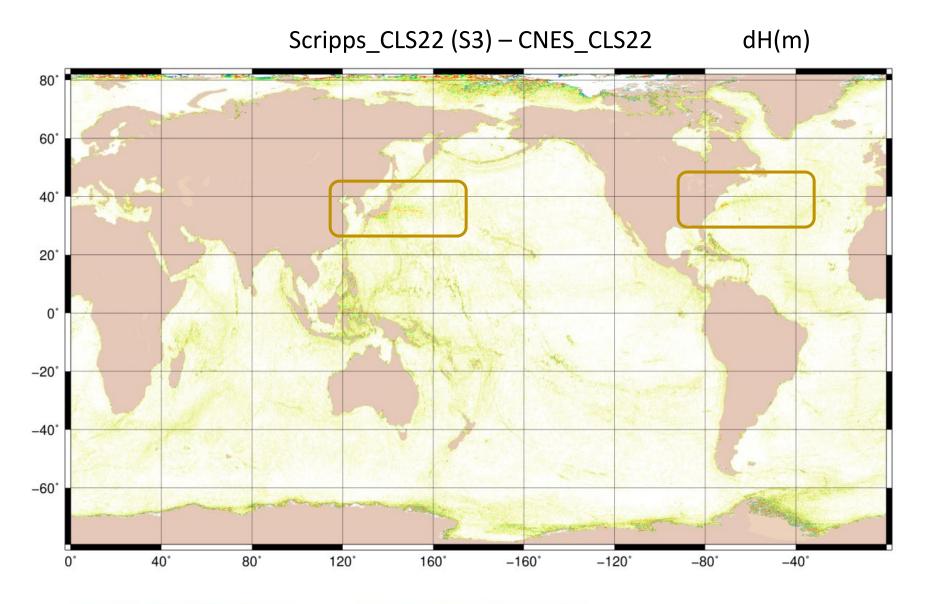
SLA TP/J1/j2 [1993, 2012]

Mean of multi-mission DUACS gridded products the MSS reference period [1993, 2012]

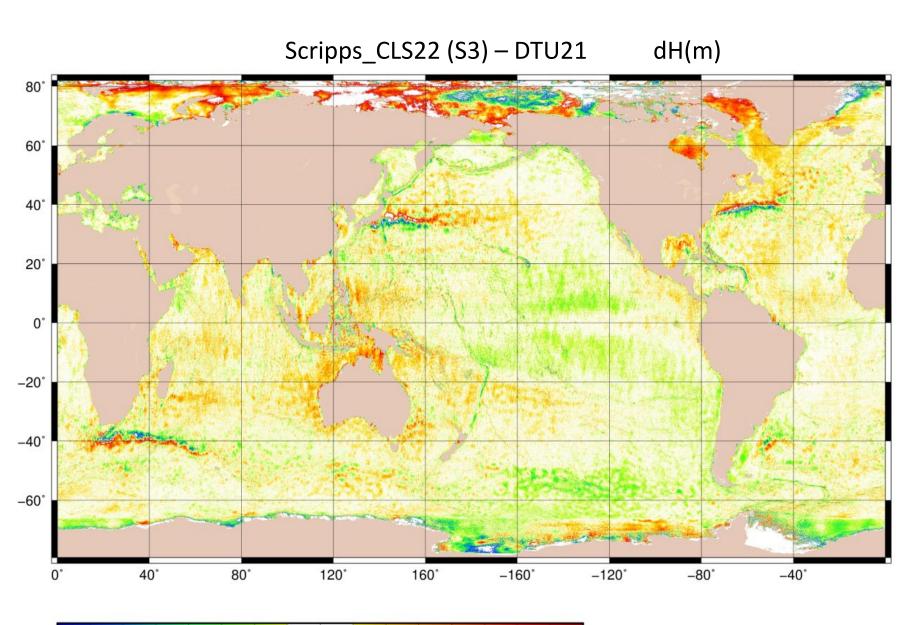

gridded SLA DUACS DT-2018[1993, 2012]



nearly cst map as expected => This means that an average calculated over 20 years brings us closer to the steady state!


SWOT - MSS must be corrected for slope effect

• New MSS will result from a combination of **various altimeter** that are not affected in the same way by the slope of the sea surface.



Differences between HR MSS

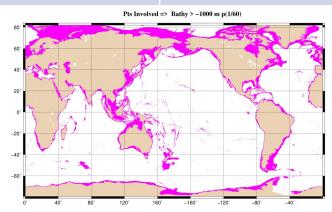
- These two solutions are very close.
- Differences in amplitude of 1 to 2 cm appear along the geophysical structures that suggest more HR for Scripps model.
- There is a slight impact of ocean variability on areas of strong currents.

Differences between HR MSS

 $-0.08 - 0.07 - 0.06 - 0.05 - 0.04 - 0.03 - 0.02 - 0.01 \ 0.02 \ 0.03 \ 0.04 \ 0.05 \ 0.06 \ 0.07 \ 0.08$

- These two solutions remain close in terms of short wavelength content.
- The difference due to the oceanic variability is more significant.

Differences between HR MSS


Differences are calculated on grids at 1 min resolution.

Bathy > 1000 m

Diff	Nb Points	Mean (cm)	Std (cm) [3σ]
Scripps – CLS	119 439 521	0,06	0,80
CLS - DTU	118 365 843	0,09	1,38
Scripps – DTU	118 861 025	0,02	1,46

Bathy < 1000 m

Diff	Nb Points	Mean (cm)	Std (cm) [3σ]
Scripps – CLS	12 542 354	0,63	3,38
CLS - DTU	12 599 451	0,40	4,99
Scripps – DTU	12 535 188	-0,25	5,22

- The low values of the averages imply that these MSS are "centered" and therefore consistent in term of Sea Level Rise.
- ➤ The standard deviation values show that these MSS are close in terms of high-resolution content and also consistent with the expected accuracy of SWOT.
- We note a relative degradation of the accuracy near the coasts which remains one of the major difficulties concerning the processing of altimetric data.
- excluding latitudes higher than 60 degrees gives the same results

Conclusion

- The 3 MSS are "centered in time" and therefore consistent in term of Sea Level Rise.
- In open ocean: MSS are close in terms of high-resolution content and consistent with the expected accuracy of SWOT
- Less consistence near the coast ...

WG MSS recommendation

• The joint use of the SCRIPPS-CLS and DTU MSS for the Cal/Val SWOT activities can allow to decorrelate the imperfections linked to the MSS and to these of SWOT data.