Isabelle Pujol – CLS Philippe Schaeffer – CLS Yannice Faugere – CLS Gérald Dibarboure – CNES

Overview

MSS models :

- CNES_CLS_2022 : S3 not included
- SCRIPPS_CLS21_UPDATED_S3 : version based on CNES_CLS_2022 including use of S3A/B
- DTU_2021 (S3 included)

Rq: CNES_CLS2022 = CNES_CLS2021 + Leads in arctic aera

- Data for validation:
 - Sentinel-3A 20Hz LRRMC processing ; Cycles 26 & 38 (Jan et Dec 2018)

Reminder the results of the direct differences...

Differences between HR MSS

• Differences are calculated on grids at 1 min resolution.

Bathy > 1000 m

Diff	Nb Points	Mean (cm)	Std (cm) [3σ]	
Scripps – CLS	119 439 521	0,06	0,80	
CLS - DTU	118 365 843	0,09	1,38	
Scripps – DTU	118 861 025	0,02	1,46	
Bathy < 1000 m				
Diff	Nb Points	Mean (cm)	Std (cm) [3σ]	
Scripps – CLS	12 542 354	0,63	3,38	
CLS - DTU	12 599 451	0,40	4,99	
Scripps – DTU	12 535 188	-0,25	5,22	

- The low values of the averages imply that these MSS are "centered" and therefore consistent in term of Sea Level Rise.
- The standard deviation values show that these MSS are close in terms of high-resolution content and also consistent with the expected accuracy of SWOT.
- We note a relative degradation of the accuracy near the coasts which remains one of the major difficulties concerning the processing of altimetric data.

CLS

Gridded MSSs errors at short WL

methodology:

- Based on SLA comparison between 2 cycles
- Sentinel-3B used as independent measurement
- Focus on WL [15, 100km]

3 assumptions:

1) There is no covariance between the SLA signal and the MSS errors \rightarrow We use a mission/period independent from MSS computation: S3PP/CNES Sentinel-3A (20Hz)

2) The SLA signal is completely decorrelated between the two cycles considered \rightarrow We chose A and B far enough from each other

3) The MSS error is the same whatever the cycle considered \rightarrow we use a repetitive mission

We consider :

- H = SLA signal including the MSS errors (e) and the SLA signal free from MSS errors (h)
- A and B = two different cycles

$$0.5 \ \sigma^2(H_A - H_B) - 0.5 \ \sigma^2(H_A + H_B) = 2 \ \sigma^2(e)$$
Mean spectral content
of the h signal
Mean spectral content of

LECTE LOCALISATION SATELLITES

Gridded MSSs errors at short WL – S3A LR-RMC reference

	Error [15, 100 km]	
MSS	cm²	% for SLA (noise free) variance*
SCRIPPS CLS21 updated_S3	0.21	18
CNES_CLS21	0,24	21
DTU21	0,34	29

* Reference SLA noise free variance = 1.16 cm²

SCRIPPS CLS21 updated_S3 & CNES_CLS22 : Closest results

Scripps CLS21 : the smallest error from the point of view of S3A

Gridded MSSs errors at short WL – S3A LR-RMC reference

If we look at the wavelengths between 50 and 10 km: the integral of the differences between the curves is less than 0,5 cm in std !

> Globally slight reduction of the variance for SCRIPPS (mean an improvement of HR)

MSS SCRIPPS_CLS21_UPDATED_S3 error

MSS CNES21 error

-2.0 - 1.6 - 1.2 - 0.8 - 0.4 0.0

Difference: Error Scripps_CLS22 – Error CNES_CLS21

Very close results in open ocean

1.2

1.6

2.0

0.4

0.8

- > A little more oceanic variability over high current areas for DTU
- Globally a bit more variance for DTU (means better HR for Scripps)

MSS SCRIPPS_CLS21_UPDATED_S3 error

MSS DTU21 error

-2.0 - 1.6 - 1.2 - 0.8 - 0.4 0.0 0.4 0.8 1.2 1.6 2.0

 cm^2

-2.0-1.6-1.2-0.8-0.4 0.0 0.4 0.8 1.2 1.6

Difference: Error Scripps_CLS22 – Error DTU21

> Differences in blue suggest that DTU contains more oceanic variability

WL range [15_100 km] (from S3A measurement)

- The S3A validation shows that these 3 MSS have a low level of error which is compatible with the needs for SWOT.
- WG MSS recommendation => use Scripps_CLS & DTU MSS for intercomparisons will allows us a better decorrelation between the *contribution* of MSS & SWOT

Perspective

> More investigations (assessment) near the coast ...

