

MERCATOR OCEAN

Assessing the impact of the assimilation of SWOT observations in a global high-resolution analysis and forecasting system

Mounir Benkiran, Pierre-Yves Le Traon, Elisabeth Rémy and Babette C. Tchonang Mercator Ocean international

https://www.mercator-ocean.fr mbenkiran@mercator-ocean.fr

- Prepare the assimilation of SWOT in Mercator Ocean analysis and forecasting systems.
- Answer a few questions:
 - ✓ How to integrate this new dataset into forecasting systems?
 - ✓ What is SWOT's contribution to the quality of ocean forecasting and analysis?
 - ✓ What is the impact of SWOT measurements on small scales (mesoscale and sub-mesoscale)
 - \checkmark How the model will propagate (in time and space) the assimilated SWOT data.
- Use an Observing System Simulation Experiments (OSSE)
 - OSSE with regional Model (1/12°) and NatRun (1/36°)
 - OSSE with regional Model (1/36°) and NatRun (NATL60, 1/60°)
 - > OSSE global model (1/12°) : recent results (first time with the global system)

- The necessary updates to the operational forecasting system to better assimilate this new dataset
- The results of the SWOT data assimilation experiments with respect to conventional sea level data (Nadirs).
- Impact of SWOT data error on the global ocean forecasting system.

<u>Results</u> of the study: Two papers concerning this work have been plublished in Frontiers

ORIGINAL RESEARCH published: 22 July 2021 doi: 10.3389/fmars.2021.691955

> Check for updates

Assessing the Impact of the Assimilation of SWOT Observations in a Global High-Resolution Analysis and Forecasting System Part 1: Methods

Mounir Benkiran^{1*}, Giovanni Ruggiero¹, Eric Greiner², Pierre-Yves Le Traon^{1,3}, Elisabeth Rémy¹, Jean Michel Lellouche¹, Romain Bourdallé-Badie¹, Yann Drillet¹ and Babette Tchonang¹

Tchonang et al, 2021: Results

frontiers in Marine Science

ORIGINAL RESEARCH published: 26 August 202 doi: 10.3389/fmars.2021.687414

Assessing the Impact of the Assimilation of SWOT Observations in a Global High-Resolution Analysis and Forecasting System – Part 2: Results

Babette C. Tchonang^{1*}, Mounir Benkiran¹, Pierre-Yves Le Traon^{1,2}, Simon Jan van Gennip¹, Jean Michel Lellouche¹ and Giovanni Ruggiero¹

OCEAN

OSSE Study (Simulation of Observation):

- Simulated SSH : •
 - \succ Swot (6 Kms x 6 Kms) data: NatRun SSH + Karin noise (SWH=2m)
 - > Nadirs altimeter data (1Hz): NatRun SSH (LRM mode : Jason3, Sentinel3A, Sentinel3B)
- SST (L3S (ODYSSEA), 10km, daily)
- T&S profiles (CORA4.1)
- Sea Ice Concentration

SSH from NatRun over the **7-day** (01-08/01/2015) analysis window over the Kurushio region

EPCATOR

Observing System Simulation Experiments(OSSEs) global system (1/12°)

SWOT alone:

- good representation of the structures (2D)
- Non-homogeneous data coverage during an analysis cycle.

Best data coverage : SWOT + ?Nadirs

SSH Variance Error: 3Nadirs vs SWOT (Analysis, 2015)

Error = NatRun - OSSEs

AEPCATOR

Adding SWOT observations to those of three nadir altimeters reduces the global error variance of the SSH in the analyses by about 36%.

Effective resolution : SWOT vs 3Nadirs

MERCATOR

(As proposed by Ballarotta et al 2019)

> improvement : Very different depending on the geographical area.

MERCATOR Spectral analysis : SSH(<u>Forecast</u>) Corehence (North Atlantic Drift)

frequency (days)

Add SWOT (3N +SWOT, North Atlantic Drift)

2D Coherence Spectral

✓ Reduction of SSH RMS Error

- ✓ Improvement space coherence:
- ✓ 50days to 25days : time coherence (Natrun vs OSSEs) : Improvement around 50%.

(As proposed by Le Guillou, 2021)

MERCATOR **<u>SWOT Study</u>**: Impact on Temp , Sal and velocities at Various Depths

Global RMS Error: Temperature and salinity at Various Depths

- Significantly reduced by assimilation (3N, black profiles) vs free run (orange profiles)
- Assimilation (Adding) SWOT (red profiles) :
 - No degradation
 - Improvement 100-750m depth

Global RMS Error: velocities (U & V) at Various Depths

- Significantly reduced by assimilation vs free run (orange profiles)
- Assimilation (Adding) SWOT (red profiles) : ٠
 - No degradation
 - improvement over the whole water column in zonal and meridional velocity

[ш

- **SWOT observations**: significant improvement in the quality of ocean analyses and forecasts
- Impact of SWOT observations: Very different depending on the geographical area.
- **3 Nadirs +SWOT**: global reduction in SSH and U&V errors by ~36% and ~24% compared to 3 nadirs.
- <u>Spatial scales < 200 km</u>: global reduction of SSH error by ~40% outside tropical regions compared to 3 Nadirs
- Adding of SWOT : improvement of SSH Space/Time coherence with Natrun
- More important improvements at high latitudes where SWOT space-time coverage is denser

The Mercator Ocean and Copernicus Marine Service high-resolution global analysis and forecasting system is ready to assimilate SWOT data. The impact is very positive at all latitudes and space-time scales.

Idealized experiment : only random noise was considered.

> Assimilation with scale separation (multiscale analysis, work in progress)

> New diagnostics (e.g. vertical velocity)

- Introduce wave maps (daily) to simulate observations error (Impact on KaRIn)
- >Add correlated error terms (eg roll errors) in the OSSEs including their reduction through the DUACS L3 processing system (cross-calibration) (preferred) or directly in the assimilation system

> Test with real data (SWOT 1 day phase)

<u>Objective</u>: be ready to assimilate SWOT data in the global Mercator Ocean/Copernicus Marine Service system in a demonstration mode at the end of 2023 (nominal 21 day phase).

TABLE 1 | Differences in model parameterisation between (NatRun) NR and (Free Run model) FR.

	Nature run	Free run
Nemo version	NEMO3.6	NEMO3.1
vertical levels	75	50
Forcing flux	ERA-Interim reanalysis (3 h for dynamic, 24 h for flux)	ECMWF IFS-operational analysis (3 h for all variables)
Bulk formulae	IFS implemented in Aerobulk package (Brodeau et al., 2017)	NCAR (Large and Yeager, 2009)
Ocean stress computation	Absolute wind	50% of ocean velocity are taken into account (Bidlot, 2012)
Atmospheric pressure	Apply though Inverse barometer force.	No
Free surface	Explicit barotropic and	Filtered free surface (Routlet and
formulation	baroclinic modes solved by a split-explicit method (Shchepetkin and	Madec. 2008)
Sea level	Variable volume (Adcroft and Campin, 2004)	Fixed ocean volumes
horizontal momentum advection	UBS scheme (Shchepetkin and McWilliams, 2008) without explicit diffusion	Centered advection scheme with an explicit biharmonic diffusion $(-1.5 \times 10^{-9} \text{m}^3 \text{ s}^{-3})$
Vertical mixing	k-espilon (Rodi, 1987)	IKE (Blanke and Delecluse, 1993

Benkiran et al 2021

Temporal evolution of global error variance for velocities

OSSE1: Red : 3Nadirs OSSE2: Blue : SWOT OSSE3: Green : 3Nadirs+SWOT dash lines : Forecast

- plain lines : Analysis
 - Seasonal variation in error with a peak in summer for all OSSEs
 - The variance of errors decreased from OSSE1 to OSSE3.

Adding SWOT in the global Ocean : Improvement (24% in Analysis and 23% in Forecast)