
cnes

SA

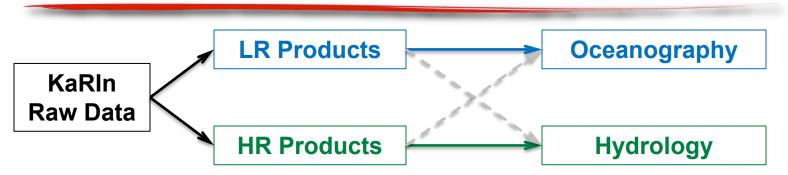
K SPACE

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Science Team Meeting

June 27–30, 2022


LR Data Over Land and HR Data Over Ocean

Curtis W. Chen⁽¹⁾ for the CNES-JPL Algorithm Team

⁽¹⁾Jet Propulsion Laboratory, California Institute of Technology

LR and HR Data Streams

SWOT

- KaRIn LR and HR data streams are split on board spacecraft in instrument firmware processing
 - Nine-beam LR interferograms are formed on board and spatially averaged before being downlinked
 - HR pulse data are pre-summed (low-pass filtered in along-track) on board before being downlinked
- Ground algorithms and data products are designed around using LR data over ocean and HR data over land, not vice versa
 - LR data for hydrology and HR data for oceanography *may* still be useful
 - But prospective users should gain familiarity with data products and algorithms to determine whether LR data for land and HR data for ocean meet their needs/desires

Users should *not* assume that LR and HR data differ only in horizontal resolution and height accuracy

LR Data Over Land

- KaRIn on-board processor (OBP) uses flat reference surface per swath side
 - Design of on-board reference surface was based on hydro input
 - May still give increased error where there are rapid spatial variations in elevation
- Phase-bias correction in ground processing is sensitive to spatial variations in backscatter and topography at 1–10 km length scales
- LR ground processing does not include many steps that are done in HR processing:
 - Classification (water detection and dark water flagging)
 - Phase unwrapping with respect to HR reference DEM
 - River and lake vector processing

SWOT

- Crossover-calibration corrections are not applied to LR products, so LR products will contain spatially varying cross-track tilts
 - But crossover-calibration correction terms are reported in product so users can apply themselves
- LR quality flags are designed for ocean and may not be trustworthy

LR data products are *not* simply less-noisy, coarserresolution versions of HR products

Pre-summing in OBP implies loss of information in downlink

SWOT

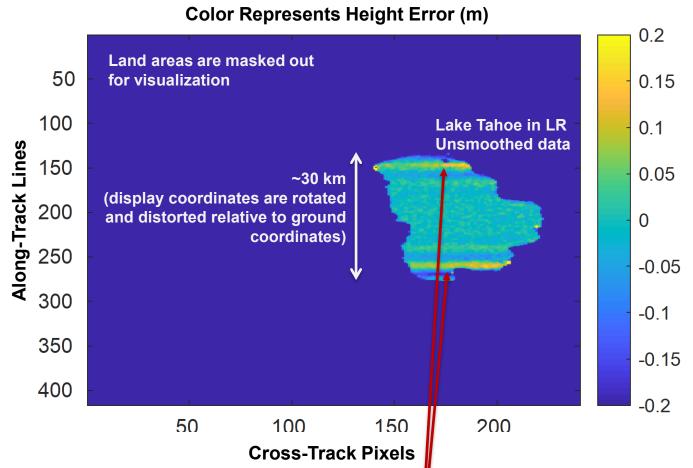
- HR ground processing does not do very much spatial averaging
 - HR data may be sensitive to wave-bunching effects observed on AirSWOT unless specialized post-processing is applied
- HR data products do not include ocean tide or sea-state bias (SSB) corrections
- Prior-based river and lake outputs may exist but be empty over ocean where there are no database features
- HR quality flags are designed for inland water and may not be trustworthy
- Note: Cal/Val team will use some HR data over ocean, but only for specific calibration purposes and only after customized offline processing

HR data products are *not* simply noisier, finer-resolution versions of LR products

Conclusions

- Expert users are welcome to try to exploit LR data for inland water and/or HR data for ocean, but such users should:
 - Plan to become familiar with details of KaRIn measurement principles, algorithms, and data products before making interpretations of data
 - Temper their expectations of data quality

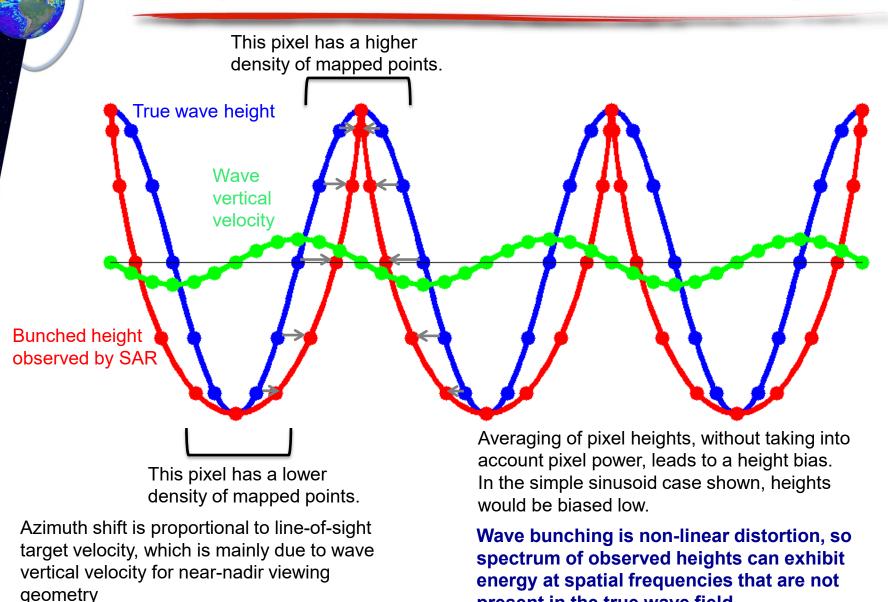
SWOT


- Expect to have to resolve unexpected features and quirks of data
- Priority for remaining time before launch and Cal/Val is LR data for ocean and HR data for inland water, not vice versa
- Future improvements in operational data products may be possible but would probably not be available until some future reprocessing (not yet determined)

SWOT

Simulated LR Data Over Lake Tahoe

SWOT



+/-0.2 m height errors due to processing artifacts (interpolator ringing) are evident

A possible mitigation has been identified but has not yet been baselined because it increases computation resource needs

Height Distortion From Wave Bunching

SWOT

present in the true wave field