From 250 m to 2 km posting;
implications of the L2B
averaging step

B. Molero, A. Bohe, P. Dubois
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KaRIn processing
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KaRIn processing

250-m Ground Processing
posting

>

* Show that the averaging to the 2 km grid does not add
suplementary errors

* Wave signal energy could eventually end close to the
band limit of 4 km (2Asampiing): how is it handled by
the 2 km filter?

* What about topography?
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Waves

* For waves totally decorrelated in space
(white), the SSH errors at 2 km mainly follow
the spectral response of the Hamming
averaging filter

101

1D spectrum of SSH errors at 2 km
when waves are decorrelated

-E. 10-2 /’m ’\FJ_\’\ of the OBP basically follow the OBP averaging
*E /-\Vj\ spectral response

Hamming spectral response e Under such conditions, the Hamming filter
seems a good solution with

* This is because, the spectrum of SSH errors out

103 - - - - * low aliased power
0.00 0.05 0.10 0.15 0.20 0.25

Along-track freq [1/km]  Relatively high spectral resolution (~6 km)

* Interesting noise variance reduction ratio (75 in
2D)
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Waves
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* True waves are however correlated in space

* [Peral et al. 2015] showed that KaRIn changes the shape of the true wave spectrum, aliasing wave

energy onto longuer wavelengths

* The OBP distorts the wave spectrum differently depending on the sea state and it is difficult to
assess analytically the performance of the 2 km filter for « true » waves

* We run KaRIn simulations for different sea states and compare to uncorrelated waves simulations

2D spectrum of errors for
correlated waves

Vs
de-correlated waves
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Waves
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Apart from simulating waves, we need also to simulate backscatter, whose modulation along the
wave profile adds extra bias and variance to SSH errors

However, for the case of KaRIn, we don’t know accurately the amplitude and the phase of this
backscatter modulation

We set amplitude to reproduce 3% of the SWH value (as nadir altimeters) and no phase shift

Because this is probably an overestimate, simulations with this backscatter modulation define a
worst case scenario while simulations with no backscatter modulation define a best case

scenario.

The reality will lay somewhere in between these two cases



Wave fields

3 m swell field

2 m wind field 6 m wind field (200 m wavelength)
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(Other directions and wavefields also tested, only 3 showed here)
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Results no backscatter modulation

3 m swell field

2 m wind field 6 m wind field
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* No important extra energy wrt the uncorrelated wave case
* At low frequency, some difference mostly due to PSD estimation uncertainty
 The Hamming filter does not add additionally errors
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Results: « worst » backscatter modulation

3 m swell field

2 m wind field 6 m wind field
(200 m wavelength)
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* More important extra energy when waves are bigger than 2m SWH wind waves
* Istdue to the 2 km filter?
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Results: « worst » backscatter modulation

* Extra noise already present in the
OBP output, before the 2 km filter

 The Hamming filter does not sum :
additionally errors Py
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Approach
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Approach
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Approach
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Results

* No impact at wavelengths > 15 km
e Signal energy underestimated at wavelengths < 15 km
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Results

e Other filters might provide improvements at wavelengths < 15 km
* At the expense of some drawbacks (filter length)
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Conclusions

* When waves are present, the 2 km filter does not add important supplementary errors or aliasing
* Wave errors within the pass band come from the OBP

* Regarding topography, the 2 km filter does not add errors at wavelengths > 15 km

* At short wavelengths (< 15 km), the SLA energy is underestimated

* Those ST members interested in these short wavelengths: 250 m products will be available and
we can work together on your specific cases
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Increase the noise floor
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* Which part of
the errors is
due to alias?
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Error power
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* For wavelengths << 15
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km, the requirements
are at 10 times less
power than the SLA
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Figure 6. SSH error spectrum requirement (red curve) as a function of wavenumber, given by Eggy (f) =2 +

1.25e-3f 2. Also shown is the global mean SSH spectrum estimated from the Jason-1 and Jason-2 observations
(thick black line), the lower boundary of 68% and 95% of the spectral values (upper gray dotted line and lower
gray dotted lines, respectively). The intersections of the two dotted lines with the error spectrum at ~ 15 km (68%)
and 30 km (95%) determine the resolving capabilities of the SWOT measurement. The threshold requirement is

also shown (blue), which follows the expression ELgeS"4(f) = 4 + 1.5e-3 2.
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