

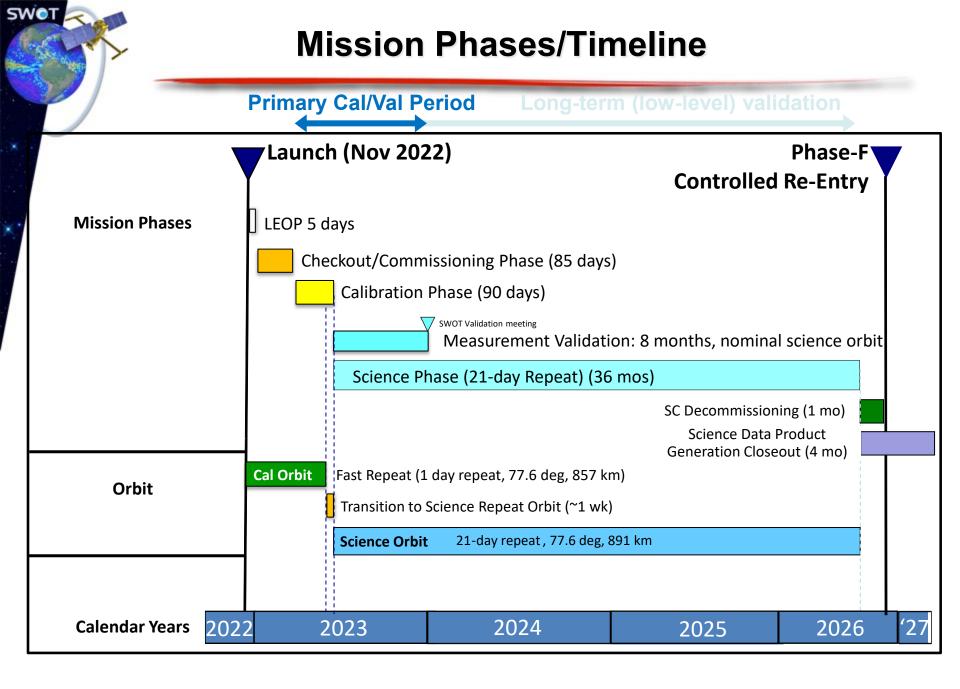
National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Surface Water and Ocean Topography (SWOT) Mission

Science Team Meeting

June 27–30, 2022


Ocean Cal/Val Intro

Curtis W. Chen⁽¹⁾ for the JPL Cal/Val Team

⁽¹⁾Jet Propulsion Laboratory, California Institute of Technology

- Basic objectives of Cal/Val¹:
- Calibration: Estimate calibration parameters for ground processing based on flight data
- Error budget validation: Validate measurement performance ("Does system behave as expected, and if not, what can/should we do?")
- Data product validation: Validate measurement with respect to highlevel requirements ("*Does performance meet mission success criteria?*")
- Different sources of data may be useful for different Cal/Val objectives
 - Direct measurements of quantities related to SWOT measurement physics may best demonstrate that measurement performance is as expected—or enable diagnosis of problems if measurement performance is not as expected
 - Direct measurements of quantities of oceanographic science interest may best establish link between SWOT measurements and science objectives underlying SWOT requirements

Ocean and Hydro Cal/Val Relationships

- Calibration is in general split between instruments (KaRIn, AMR, etc.), not between ocean and hydro
 - Hydrology slope requirement drives phase screen calibration accuracy, but phase screen is likely to be calibrated with ocean data
- Crossover/operational calibration is area of direct overlap between ocean and hydro measurements
- Error budget validation involves overlap between ocean and hydro Cal/Val where objective is to validate fundamental measurement physics shared by ocean and hydro measurements
- Corner reflector deployment is bookkept as part of hydro Cal/Val budget but affects both hydro and ocean data
- Ocean and hydro Cal/Val are not independent

Timeline of US Ocean Cal/Val Plans

- Mid 2017: Monterey Bay experiment (in situ hydrographic, GPS collection)
- Mid 2018: Peer review of plans for pre-launch in situ campaign
- Mid 2019: Execute pre-launch MASS (lidar) campaign on Gulfstream V aircraft
- Late 2019: Execute pre-launch in situ experiment at CA crossover site
- Mid 2020: In situ key point

- Early 2021: Incorporate in situ campaign into SWOT US Cal/Val baseline
- Late 2021: MASS peer review
- Early 2022: Incorporate MASS into SWOT US Cal/Val baseline
- Late 2022: Solidify details of post-launch Cal/Val plans
- Early 2023 (L+3 months to L+6 months): Post launch Cal/Val data collection at California crossover site; KaRIn calibration and anomaly resolution
- Mid-late 2023 (L+6 to L+14 months): Continuing anomaly resolution, validation, and refinement

Cal/Val Data Priorities

Why we need external Cal/Val data:

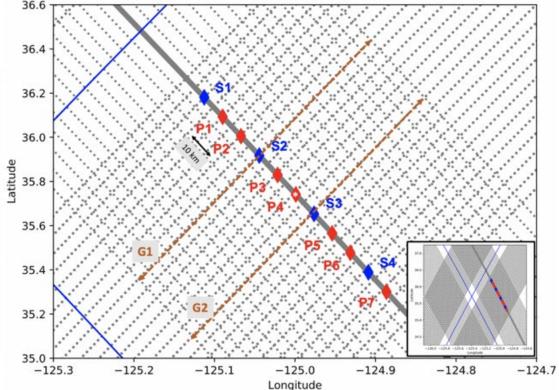
- Gain insight into what to do if (when) SWOT results do not behave as expected
- Solve for calibration parameters

SWOT

•

- Demonstrate that SWOT is meeting its requirements
- Spatially distributed SSH data is key for ocean Cal/Val:
 - SWOT spectral requirements are necessarily spatial in nature
 - 2-D spatial measurement of SSH is most novel and most challenging aspect of SWOT
- Ideal ocean Cal/Val measurement would simply be idealized version of SWOT:
 - 2-D spatial measurements of SSH over scales comparable to SWOT measurement O(100 km x 100 km), or as close to this as possible (at least 1-D, not just individual points)
 - Height accuracy on par with or better than SWOT requirements
 - Contemporaneous with SWOT passes
 - Aligned with SWOT swath (along-track for spectral validation, cross-track for calibration and engineering validation)
 - For engineering validation:
 - Measurement of physical SSH in absolute Earth frame for direct comparison to SWOT measurements
 - Other considerations:
 - Flexibility and adaptability to deal with surprises, which we expect
 - Robustness to weather, logistics, etc.
 - Cost
- Additional high-priority information:
 - Directional wave spectra measured over 2-D area, coincident with SSH measurements
 - High-resolution, 2-D estimates of Ka-band radar reflectivity would be very helpful, too

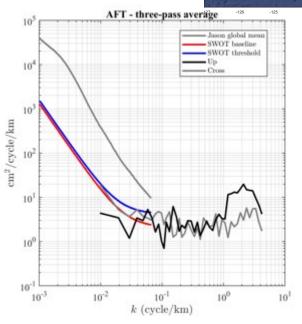
US In Situ Ocean Plans


SWOT postlaunch in-situ campaign instrumentation California site baseline

SWOT

Tag	Instrument	Coordinate (Lat, Lon)	
S1	Deep mooring	36.181, -125.113 (234.887)	
P1	Prawler	36.093, -125.090 (234.910)	
P2	Prawler	36.005, -125.067 (234.933)	
S2	Deep mooring	35.917, -125.044 (234.956)	1
P3	Prawler	35.829, -125.022 (234.978)	
P4	Prawler, barometer	35.741, -124.999 (235.001)	
53	Deep mooring	35.653, -124.976 (235.024)	
P5	Prawler	35.565, -124.954 (235.046)	
P6	Prawler	35.477, -124.931 (235.069)	
S 4	Deep mooring	35.389, -124.909 (235.091)	
P7	Prawler	35.301, -124.886 (235.114)	
G1	Glider	TBD	
G2	Glider	TBD	
G2	Glider	TBD	

Last update: 8/20/2021 Contact: Jinbo.Wang@jpl.nasa.gov


- 11 moorings, 10 km separation, 4 deep moorings, 7 shallow (500m) moorings, 2 gliders, 1 barometer
- Deployment: Bold Horizon (Eclipse Group), Feb 2023, two legs.

MASS Plans

- Modular Aerial Sensing System (MASS) operated by Scripps Institution of Oceanography
 - To be flown on NASA Gulfstream V (G-V) jet for SWOT Cal/Val
 - Includes dual-lidar configuration for SSH validation and KaRIn calibration
- 2019 experiment demonstrated:

- Successful hardware integration of MASS with G-V
- Successful flight operations, logistics, and back-end data analysis
- Excellent SSH performance that meets SWOT Cal/Val needs
- Plan includes 20 post-launch flights split between early and late phases of L+3 to L+6 months
 - Need flights dedicated to different combinations ascending/descending and left/right for KaRIn calibration
 - Allows great flexibility for dealing with unexpected issues that may arise

Additional Details

See SWOT Cal/Val plan online:

SWO

- Go to https://swot.jpl.nasa.gov/resources/documents
- Then search for "Calibration / Validation Plan" with whitespace and slash exactly as given here
- Cal/Val plan document was last modified several years ago, so some details are out of date