Estimating internal wave energy transfers from tidal to supertidal frequencies in a global HYCOM simulation

Tidal solitons or nonlinear internal waves with short wavelengths from Amazon shelf

Miguel Solano & Maarten Buijsman (USM) Jay Shriver (NRL), Roy Barkan (UCLA)

Relevance and questions

Relevance for SWOT

- Nonlinear short-wavelength internal tides (solitons) complicate the 'detiding' of SWOT altimetry
- Nonlinear solitons may alias linear internal tide altimetry models

Research questions

- 1. What is the energy content in the nonlinear internal tides in a global HYCOM simulation?
- 2. How much are the energy transfers from the linear to the nonlinear internal tides?

Tidal solitons from Mascarene Ridge

Methods

<u>HYCOM</u>

- 1/25° horizontal resolution, 41 vertical levels
- 3 hr winds + tides $(M_2, S_2, N_2, K_1, O_1)$
- No data assimilation

<u>Analysis</u>

- Analyze hourly 3D fields for 30 days of September 2016 and May/June 2019
- Band-pass for semidiurnal (D2) and diurnal (D1) bands
- Capture the supertidal band (HH) via a high-pass
- Conduct baroclinic energy analysis between $\pm 25^{\circ}$

Internal Tides (IT): sources and sinks

Time-mean and depth-integrated energy balance

Tidal (D1+D2) $C = \nabla \cdot F + \prod_{\tau} + A + D$

Supertidal (HH) $C + \prod_{\tau} = \nabla \cdot F + A + D$

- *C* topographic barotropic to baroclinic energy conversion
- *F* barocline energy flux
- A mean flow advection and mean flow shear/buoyancy production
- D dissipation

$$\Pi_{\tau} - \int \rho_0 \left(\overline{u_i u_j} - \overline{u_i} \overline{u_j} \right) \frac{\partial \overline{u_j}}{\partial x_j} \, dz \qquad \tau = 9hr$$

energy transfer associated with nonlinear wave-
wave interactions (coarse-grained Kinetic

Energy, Eyink and Aluie, 2009; Barkan et al 2021)

Kinetic Energy per frequency band

- Supertidal energy (HH) coincides with the strong stratification in the equatorial region
- HH energy is present at sites with strong D2 tides (Bay of Bengal, Amazon Shelf, Mascarene ridge)
- HH energy constitutes up to 20-40% of total (D1+D2+HH)

Nonlinear Internal Waves (NLIW)

Ellipses: strong HH fluxes (> 3 kW/m) coincide with observations of NLIW (solitons)

• Boxes:

Are these NLIW of *non*tidal origin?
Tidal generation sites are not well resolved?

Location of NLIW observed in 250m resolution satellite imagery (Jackson et al. 2012)

Internal tides at the Amazon Shelf

- Strong internal tides evolve into short and sharp crested solitons due to nonlinear dispersion (wave steepening)
- Observations coincide with strong D1+D2 fluxes

HYCOM Steric SSH

322

320

324

326

310

312

314

316

318

Longitude

[km]

D1+D2 ⇒ HH nonlinear energy transfers

- The D1+D2 flux decay is due to dissipation and energy transfer to HH (Π_{9hr})
- Patterns of HH flux divergence agree with Π_{9hr}

D1+D2 ⇒ HH nonlinear energy transfers

- The magnitudes and spatial patterns of
 ∇ · F_{HH} agree with Π_{9hr}
- The 'banding' requires further explanation

Summary

THE UNIVERSITY OF SOUTHERN MISSISSIPPI.

- At strong internal tide generation sites, super tidal energy constitutes up to 40% of the total internal tide energy in the tropics
- Areas with high supertidal energy in HYCOM coincide with observations of nonlinear internal waves
- Internal tides loose energy through wave-wave interactions in a forward cascade, transferring a net 40GW to HH within $\pm 25^{\circ}$
- At current horizontal grid resolution (~4 km), these numbers may not be accurate, as solitary waves are not well resolved

IT at the East Mascarene Ridge

