

cnes

CSAAS

JK SPACE

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Surface Water and Ocean Topography (SWOT) Mission

Science Team Meeting

KaRIn Status and Performance

Eva Peral Presented by Curtis Chen

© 2023 California Institute of Technology. Government sponsorship acknowledged.

Outline

- KaRIn timeline since launch
- KaRIn random performance
 - KaRIn SNR budget

SWO

- KaRIn height random performance
- KaRIn ocean performance with waves
- KaRIn systematic performance
- KaRIn pointing performance

KaRIn timeline since launch

SWOT

KaRIn health and status is nominal

KaRIn first light

01/19/2023: Beginning of performance checkout

SWO

- Images shows the LR power image, interferogram and coherence without any further processing.
- IR product was very good out of the box, but small improvements were made to flatness and coherence during performance checkout.
- To our knowledge, this is the first ever radar interferogram computed on board a satellite.

- Using data set with SWH ~2m and windspeed ~ 8.9m/sec per the requirements
- The different shape vs. xtrack for pre-launch CBE and flight is due pre-launch CBE using edge case elevation pointing
- Measured flight SNR for cal orbit over rain free ocean is about 6dB above pre-launch CBE.
- We had 4dB SNR margin at launch

SWOT

This translates to ~ 10dB SNR margin above the requirement for rain free ocean

SNR margin (**ΔSNR**) explained

- Pre-launch SNR margin was ΔSNR = 4dB
- Pre-launch CBE uses EOL (end of life) transmit power and antenna gain

SW01

- Pre-launch CBE noise figure assumes operation at hot AFT (allowable flight temperature)
- Pre-launch CBE includes 0.5dB antenna gain uncertainty

 \sim δΔSNR = 1dB

- Pre-launch CBE noise figure assumes land brightness temperature
- Per the requirements, using Vandemark 2009 model at 8.9m/sec windspeed for sigma0
 - The measured sigma0 is ~1.9dB higher (at 8.9m/sec, varies with wind speed)
 - *∞* δΔSNR = 1.9dB
- Per the requirements, assuming 1dB atmospheric attenuation
 - In practice, this varies. Using rain free ocean for requirement assessment.
 - \sim δΔSNR = 1dB

 \sim Total BOL (beginning of life) Δ SNR \sim 10dB over rain free ocean

Expected Total EOL (end of life) ΔSNR > 8.4dB over rain free ocean

-KaRIn random height error performance (science orbit)

SWOT

Height error (cm)	Pre-launch CBE	Flight
Random (w/o surfboard)	1.5	0.8
Requirement	2.5	2.5

- Using data set with SWH ~2m and windspeed ~ 8.9m/sec per the requirements.
- Rain free ocean
- Estimating random height error from measured coherence and estimated number of looks.

KaRIn coherence vs. SWH

SWO

 Plot shows measured coherence in open ocean (circles) as a function of SWH (as reported by nadir altimeter) at three different cross track distances.

Measured coherence matches well the theoretical prediction (solid) using the volumetric decorrelation introduced by the SWH.

Ocean PSD with waves

SWOT

Performance vs. SWH: Surf-board effect

SWO

 Excellent match between flight data (circles) and prelaunch model/simulation (solid black).

KaRIn systematic performance

Height slope as a function of beta angle compared to pre-launch simulations

□ 1 microradian slope = 6 cm height error at 60 km cross-track

SWO

- Good agreement between expected and measured systematic error performance
- The stronger orbital variability near beta 0 has been correlated with star tracker thermoelastic distortions

Antenna pointing (pitch and diff pitch)

Pitch for each antenna (solid) and differential pitch (dotted)

SW01

- ☞ Variations with beta of +/-3 mdeg and small discontinuity at yaw flip.
- All pointing performance requirements are met with margin

Conclusions

• KaRIn SNR is well understood and higher than error budget assumed

• KaRIn pointing requirements met with significant margin

SWO

• KaRIn hardware stability is good and is consistent with pre-launch predictions