





Surface Water and Ocean Topography (SWOT) Mission

September 2023 Alejandro Bohe (on behalf of the JPL/CNES ADT team)

## **SWOT LR products**

The code used to process the data continuously evolves as the algorithms are improved, configuration parameters (e.g. calibration parameters) get refined and bugs are fixed.

- « Forward » processing
  - Data is processed by SDS ~3 days after the acquisition
  - Discontinuities when new version of the code is replaces an older one
- « Summer » RE-processing
  - Uses the version of the code in operation at the end of the 1-day sampling phase
  - Homogeneous dataset over the entire 1-day sampling phase : March 30th July 10th
- « Fall » RE-processing
  - will use a newer version of the code, with improved algorithms (in particular wind and SWH)

| Product         | File                                                             | Target User                                                                                                              | Contents                                                                                                             | Measurement grid                     | MB/granule |
|-----------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|
| L2<br>(4 files) | Basic                                                            | All SSH/SSHA<br>users                                                                                                    | SSA, SSHA and most geophysical corrections                                                                           |                                      | 32         |
|                 | Wind and Wave                                                    | All SWH and<br>wind speed<br>users                                                                                       | Wind speed, SWH,<br>sigma0 and<br>intermediate<br>quantities                                                         | 2km geographically<br>fixed          | 36         |
|                 | <b>Expert</b><br>(includes copies of Basic and<br>Wind and Wave) | Expert users All corrections applied<br>who want all in Basic, alternate<br>corrections corrections and<br>intermediates |                                                                                                                      |                                      | 122        |
|                 | Unsmoothed                                                       | Expert users<br>who want full<br>downlinked<br>resolution                                                                | 500m resolution SSH<br>and sigma0                                                                                    | 250m, "native" (center<br>beam)      | 1624       |
| L1B             |                                                                  | Expert users<br>who want to<br>redo height<br>reconstructio<br>n, beam<br>combine                                        | Interferograms,<br>sigma0 and volumetric<br>decorrelation for all 9<br>beams on reference<br>grids, and all geometry | 9 reference grids with ~250m posting | ~42000     |

· cnes ·

The next slides illustrate the main variables available in the L2 and L1B products on an example from April 14th (data available to the ST) in the Gulf Stream

Cycle 490, Pass 9



## LR products : contents and illustrati Coordinates:

L2\_LR\_SSH product

2 km x 2km geographically fixed grid

surface height

(some of the) corrections

context

flags

« Basic » file

(num\_lines: 9866, num\_pixels: 69, num\_sides: 2)

| , coordinates      |                         |                |        |
|--------------------|-------------------------|----------------|--------|
| <br>latitude       | (num_lines, num_pixels) | float64        | <br>8  |
| longitude          | (num_lines, num_pixels) | float64        | <br>2  |
| ▼ Data variables:  |                         |                |        |
| time               | (num_lines)             | datetime64[ns] | <br>8  |
| time_tai           | (num_lines)             | datetime64[ns] | <br>8  |
| ssh_karin          | (num_lines, num_pixels) | float64        | <br>8  |
| ssh_karin_qual     | (num_lines, num_pixels) | float64        | <br>22 |
| ssh_karin_uncert   | (num_lines, num_pixels) | float32        | <br>8  |
| ssha_karin         | (num_lines, num_pixels) | float64        | <br>22 |
| ssha_karin_qual    | (num_lines, num_pixels) | float64        | <br>8  |
| ssh_karin_2        | (num_lines, num_pixels) | float64        | <br>8  |
| ssh_karin_2_qual   | (num_lines, num_pixels) | float64        | <br>8  |
| ssha_karin_2       | (num_lines, num_pixels) | float64        | <br>22 |
| ssha_karin_2_qual  | (num_lines, num_pixels) | float64        | <br>8  |
| num_pt_avg         | (num_lines, num_pixels) | float32        | <br>8  |
| distance_to_coast  | (num_lines, num_pixels) | float32        | <br>8  |
| heading_to_coast   | (num_lines, num_pixels) | float32        | <br>8  |
| ancillary_surface  | (num_lines, num_pixels) | float32        | <br>8  |
| dynamic_ice_flag   | (num_lines, num_pixels) | float32        | <br>8  |
| rain_flag          | (num_lines, num_pixels) | float32        | <br>8  |
| rad_surface_type   | (num_lines, num_sides)  | float32        | <br>2  |
| mean_sea_surfac    | (num_lines, num_pixels) | float64        | <br>2  |
| mean_sea_surfac    | (num_lines, num_pixels) | float32        | <br>8  |
| geoid              | (num_lines, num_pixels) | float64        | <br>2  |
| internal_tide_hret | (num_lines, num_pixels) | float32        | <br>22 |
| height_cor_xover   | (num_lines, num_pixels) | float64        | <br>2  |
| height_cor_xover   | (num_lines, num_pixels) | float32        | <br>22 |

⊢ Indexes: (0)

► Attributes: (60)



-48 -47 -46 -45 -44 m

## LR products : contents and

L2\_LR\_SSH product

« Basic » file2 km x 2km geographically fixed grid





cnes

#### LR products : contents and

L2\_LR\_SSH product

« Basic » file2 km x 2km geographically fixed grid







#### L2\_LR\_SSH product

« Basic » file2 km x 2km geographically fixed grid

ssh\_karin\_2 + height\_cor\_xover





## **KaRIn SSHA preliminary assessment**



## • **REMINDER**:

- ✓ L2 SSHA long wavelengths are affected by « systematic errors » (e.g. from roll error knowledge)
- ✓ The « crossover » correction will remove most of this error (see G. Dibarboure presentation)
- ✓ Below1000 km, these systematic errors are much smaller than the oceanic signal

← Dimensions: (num\_lines: 9866, num\_pixels: 69, num\_sides: 2)

| LK products : contents an            | ▼Coordinates:           |                         |                           |                |     |
|--------------------------------------|-------------------------|-------------------------|---------------------------|----------------|-----|
|                                      | latitude                | (num_lines, num_pixels) | float64                   |                |     |
|                                      |                         | longitude               | (num_lines, num_pixels)   | float64        |     |
|                                      |                         | ▼ Data variables:       |                           |                |     |
|                                      |                         | time                    | (num_lines)               | datetime64[ns] |     |
|                                      |                         | time_tai                | (num_lines)               | datetime64[ns] |     |
|                                      |                         | polarization_karin      | (num_lines, num_sides)    | object         |     |
|                                      |                         | swh_karin               | (num_lines, num_pixels)   | float32        |     |
|                                      | SWH measurement         | swh_karin_qual          | (num_lines, num_pixels)   | float64        |     |
|                                      |                         | swh_karin_uncert        | (num_lines, num_pixels)   | float32        | 🖹 🛢 |
|                                      |                         | sig0_karin              | (num_lines, num_pixels)   | float32        |     |
|                                      |                         | sig0_karin_qual         | (num_lines, num_pixels)   | float64        |     |
|                                      | sigma0 measurement      | sig0_karin_uncert       | (num_lines, num_pixels)   | float32        |     |
| L2 LR SSH product                    | 0                       | sig0_karin_2            | (num_lines, num_pixels)   | float32        |     |
|                                      |                         | sig0_karin_2_qual       | (num_lines, num_pixels)   | float64        |     |
|                                      |                         | wind_speed_karin        | (num_lines, num_pixels)   | float32        |     |
| « WindWave » file                    | wind speed measurement  | wind_speed_kari         | (num_lines, num_pixels)   | float64        |     |
|                                      | while speed medsurement | wind_speed_kari         | (num_lines, num_pixels)   | float32        |     |
| 2 km x 2km geographically fixed grid |                         | wind_speed_kari         | (num_lines, num_pixels)   | float64        |     |
|                                      |                         | num_pt_avg              | (num_lines, num_pixels)   | float32        |     |
|                                      |                         | swh_wind_speed          | (num_lines, num_pixels)   | float32        |     |
|                                      |                         | swh_wind_speed          | (num_lines, num_pixels)   | float32        |     |
|                                      |                         | swh_nadir_altime        | . (num_lines, num_pixels) | float32        |     |
|                                      |                         | swh_model               | (num_lines, num_pixels)   | float32        |     |
|                                      |                         | mean_wave_dire          | (num_lines, num_pixels)   | float32        |     |
|                                      | wind & wave models      | mean_wave_peri          | (num_lines, num_pixels)   | float32        |     |
|                                      |                         | wind_speed_mod.         | (num_lines, num_pixels)   | float32        |     |
|                                      |                         | wind_speed_mod.         | (num_lines, num_pixels)   | float32        |     |
|                                      |                         | wind_speed_rad          | (num_lines, num_sides)    | float32        |     |
|                                      |                         | distance_to_coast       | (num_lines, num_pixels)   | float32        |     |
|                                      |                         | heading_to_coast        | (num_lines, num_pixels)   | float32        |     |
|                                      | ancillary information   | ancillary_surface       | . (num_lines, num_pixels) | float32        |     |
|                                      |                         | dynamic_ice_flag        | (num_lines, num_pixels)   | float32        |     |
|                                      |                         | rain_flag               | (num_lines, num_pixels)   | float32        |     |
|                                      |                         | rad_surface_type        | . (num_lines, num_sides)  | float32        |     |
|                                      |                         | ⊢ Indexes: (0)          |                           |                |     |

► Attributes: (60)

#### L2\_LR\_SSH product

« WindWave » file2 km x 2km geographically fixed grid



#### L2\_LR\_SSH product

« WindWave » file2 km x 2km geographically fixed grid

![](_page_12_Figure_3.jpeg)

« Fall reprocessing » will use an improved GMF (cf presentation in Waves/air-sea interaction WG)

![](_page_12_Figure_5.jpeg)

#### L2\_LR\_SSH product

« WindWave » file2 km x 2km geographically fixed grid

« Summer reprocessing » has one measurement per swath, every 2km in along-track

![](_page_13_Figure_4.jpeg)

![](_page_13_Figure_5.jpeg)

#### L2\_LR\_SSH product

« WindWave » file2 km x 2km geographically fixed grid

« Fall reprocessing » will use calibration and 2D inversion (cf presentation in Waves/air-sea interaction WG)

![](_page_14_Figure_4.jpeg)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 m

L2\_LR\_SSH product

« Expert » file2 km x 2km geographically fixed grid

contains a copy of the Basic and WindWave datasets, as well as :

| sc_altitude       | (num_lines)             |
|-------------------|-------------------------|
| orbit_alt_rate    | (num_lines)             |
| cross_track_angle | (num_lines)             |
| sc_roll           | (num_lines)             |
| sc_pitch          | (num_lines)             |
| sc_yaw            | (num_lines)             |
| velocity_heading  | (num_lines)             |
| orbit_qual        | (num_lines)             |
| latitude_avg_ssh  | (num_lines, num_pixels) |
| longitude_avg_ssh | (num_lines, num_pixels) |
| cross_track_dista | (num_lines, num_pixels) |
| x_factor          | (num_lines, num_pixels) |
| sig0_cor_atmos    | (num_lines, num_pixels) |
| sig0_cor_atmos_r  | (num_lines, num_pixels) |
| doppler_centroid  | (num_lines, num_pixels) |
| phase_bias_ref_s  | (num_lines, num_pixels) |
| obp_ref_surface   | (num_lines, num_pixels) |
| rad_tmb_187       | (num_lines, num_sides)  |
| rad_tmb_238       | (num_lines, num_sides)  |
| rad_tmb_340       | (num_lines, num_sides)  |
| rad_water_vapor   | (num_lines, num_sides)  |
| rad_cloud_liquid  | (num_lines, num_sides)  |
| mean_sea_surfac   | (num_lines, num_pixels) |
| geoid             | (num_lines, num_pixels) |

mean\_dynamic\_t... (num\_lines, num\_pixels) mean\_dynamic\_t... (num\_lines, num\_pixels) (num\_lines, num\_pixels) depth\_or\_elevati... solid\_earth\_tide (num\_lines, num\_pixels) ocean\_tide\_fes (num\_lines, num\_pixels) ocean\_tide\_got (num\_lines, num\_pixels) load\_tide\_fes (num\_lines, num\_pixels) load\_tide\_got (num\_lines, num\_pixels) ocean\_tide\_eq (num\_lines, num\_pixels) ocean\_tide\_non\_... (num\_lines, num\_pixels) internal\_tide\_hret (num\_lines, num\_pixels) internal\_tide\_sol2 (num\_lines, num\_pixels) pole\_tide (num\_lines, num\_pixels) (num\_lines, num\_pixels) dac (num\_lines, num\_pixels) inv\_bar\_cor model\_dry\_tropo... (num\_lines, num\_pixels) model\_wet\_trop... (num\_lines, num\_pixels) rad\_wet\_tropo\_cor (num\_lines, num\_pixels) iono\_cor\_gim\_ka (num\_lines, num\_pixels) height\_cor\_xover (num\_lines, num\_pixels) height\_cor\_xover... (num\_lines, num\_pixels) (num\_lines, num\_pixels) rain\_rate (num\_lines, num\_pixels) ice\_conc sea\_state\_bias\_cor (num\_lines, num\_pixels) sea\_state\_bias\_c... (num\_lines, num\_pixels) swh\_ssb\_cor\_sou... (num\_lines, num\_pixels) swh\_ssb\_cor\_sou... (num\_lines, num\_pixels) wind\_speed\_ssb\_... (num\_lines, num\_pixels) wind\_speed\_ssb\_... (num\_lines, num\_pixels)

#### L2\_LR\_SSH product

« Unsmoothed » file approximately 250m x 250m grid exact location depends on actual observation geometry at the time of the measurement

One netcdf group per side (left/right)

| ► Dimensions:      | (num_lines: 82249, num_pixels: 240) |                |  |  |  |  |  |  |
|--------------------|-------------------------------------|----------------|--|--|--|--|--|--|
| ▼ Coordinates:     |                                     |                |  |  |  |  |  |  |
| latitude           | (num_lines, num_pixels)             | float64        |  |  |  |  |  |  |
| longitude          | (num_lines, num_pixels)             | float64        |  |  |  |  |  |  |
| ▼ Data variables:  |                                     |                |  |  |  |  |  |  |
| time               | (num_lines)                         | datetime64[ns] |  |  |  |  |  |  |
| time_tai           | (num_lines)                         | datetime64[ns] |  |  |  |  |  |  |
| latitude_uncert    | (num_lines, num_pixels)             | float32        |  |  |  |  |  |  |
| longitude_uncert   | (num_lines, num_pixels)             | float32        |  |  |  |  |  |  |
| polarization_karin | (num_lines)                         | object         |  |  |  |  |  |  |
| ssh_karin_2        | (num_lines, num_pixels)             | float64        |  |  |  |  |  |  |
| ssh_karin_2_qual   | (num_lines, num_pixels)             | float64        |  |  |  |  |  |  |
| ssh_karin_uncert   | (num_lines, num_pixels)             | float32        |  |  |  |  |  |  |
| sig0_karin_2       | (num_lines, num_pixels)             | float32        |  |  |  |  |  |  |
| sig0_karin_2_qual  | (num_lines, num_pixels)             | float64        |  |  |  |  |  |  |
| sig0_karin_uncert  | (num_lines, num_pixels)             | float32        |  |  |  |  |  |  |
| total_coherence    | (num_lines, num_pixels)             | float32        |  |  |  |  |  |  |
| mean_sea_surfac    | (num_lines, num_pixels)             | float64        |  |  |  |  |  |  |
| miti_power_250m    | (num_lines, num_pixels)             | float32        |  |  |  |  |  |  |
| miti_power_var     | (num_lines, num_pixels)             | float32        |  |  |  |  |  |  |
| ancillary_surface  | (num_lines, num_pixels)             | float32        |  |  |  |  |  |  |

![](_page_17_Figure_0.jpeg)

-48 -47 -46 -45 -44 m L2\_LR\_SSH product

« Unsmoothed » file approximately 250m x 250m grid exact location depends on actual observation geometry at the time of the measurement

![](_page_18_Figure_3.jpeg)

Be careful when computing 1-day differences for example

#### L2\_LR\_SSH product

« Unsmoothed » file approximately 250m x 250m grid exact location depends on actual observation geometry at the time of the measurement

![](_page_19_Figure_3.jpeg)

![](_page_19_Figure_4.jpeg)

#### LR products : contents and ill

L2\_LR\_SSH product

« Unsmoothed » file approximately 250m x 250m grid exact location depends on actual observation geometry at the time of the measurement

![](_page_20_Figure_3.jpeg)

![](_page_20_Figure_4.jpeg)

![](_page_20_Figure_5.jpeg)

![](_page_21_Figure_0.jpeg)

12.0 12.5

#### dB

#### **Small scale surface roughness around 50-km eddy**

C2/T313, C2/T326 -- Sla calibrated (cm)

(cf presentation by P. Dubois in Waves/air-sea interaction WG)

1.6

1.65

C2/T313, C2/T326 -- Sigma 0 250m (db)

![](_page_22_Figure_5.jpeg)

![](_page_22_Figure_6.jpeg)

L1B LR INTF product

Single file, ~20GB, one netCDF group per side « radar » variables, not geolocated Before combining the 9 doppler beams

(num beams: 9, num lines: 82457, num pixels: 240, num coord: 3, complex depth: 2, ⊢ Dimensions: num\_doppler\_miti\_lines: 10384, num\_doppler\_miti\_pixels: 24) ▼ Coordinates: reference\_latitude (num\_beams, num\_lines, num\_pixels) float64 ... 🖹 🚍 reference longitu... (num beams, num lines, num pixels) float64 ... 🖹 🚍 Data variables: reference\_location (num\_beams, num\_lines, num\_pixels, num\_coord) float64 ... 🖹 🛢 (num\_beams, num\_lines, num\_pixels, complex\_depth) float32 ... 🖹 🚍 interferogram float32 ... 🖹 🛢 phase\_uncert (num\_beams, num\_lines, num\_pixels) (num\_beams, num\_lines, num\_pixels) float32 ... 🖹 🚍 (num\_beams, num\_lines, num\_pixels) float32 ... 🖹 🚍 sig0\_uncert volumetric\_correl... (num\_beams, num\_lines, num\_pixels) float32 ... 🖹 🛢 volumetric\_correl... (num\_beams, num\_lines, num\_pixels) float32 ... 🖹 🚍 float32 ... 🖹 🚍 float32 ... 🖹 🚍

angular\_correlati... (num\_beams, num\_lines, num\_pixels) geometric\_correl... (num\_beams, num\_lines, num\_pixels) float32 ... 🖹 🛢 noise\_correlation (num\_beams, num\_lines, num\_pixels) (num\_beams, num\_lines, num\_pixels) float32 ... 🖹 🚍 x\_factor\_plus\_y x\_factor\_minus\_y (num\_beams, num\_lines, num\_pixels) float32 ... 🖹 🚍 float32 ... 🖹 🛢 uncalibrated\_po... (num\_beams, num\_lines, num\_pixels) float32 ... 🖹 🛢 uncalibrated po... (num\_beams, num\_lines, num\_pixels) float32 ... 🖹 🛢 noise\_power\_plu... (num\_beams, num\_lines, num\_pixels) noise\_power\_min... (num\_beams, num\_lines, num\_pixels) float32 ... 🖹 🚍 model\_dry\_tropo... (num\_beams, num\_lines, num\_pixels) float32 ... 🖹 🛢 model\_wet\_trop... (num\_beams, num\_lines, num\_pixels) float32 ... 🖹 🛢 (num\_beams, num\_lines, num\_pixels) float32 ... 🖹 🚍 iono\_cor\_gim\_ka phase\_bias\_cor (num\_beams, num\_lines, num\_pixels) float32 ... 🖹 🚍 interferogram\_q... (num\_beams, num\_lines, num\_pixels) float64 ... 🖹 🛢 snr (num\_beams, num\_lines, num\_pixels) float32 ... 🖹 🛢 num\_looks (num\_beams, num\_lines, num\_pixels) float32 ... 🖹 🛢 (num beams, num lines, num pixels) float32 ... 🖹 🛢 sig0\_cor\_atmos\_... float32 ... 🖹 🛢 doppler\_centroid (num\_lines, num\_pixels) obp\_ref\_surface (num\_lines) float32 ... 🖹 🚍 pulse\_repetition\_... (num\_lines) float32 ... 🖹 🛢 (num lines, num pixels) float64 ... 🖹 🚍 power miti power\_squared\_... (num\_lines, num\_pixels) float64 ... 🖹 🛢 datetime64[ns] ... 🖹 🚍 time\_doppler\_miti (num\_doppler\_miti\_lines) datetime64[ns] ... 🖹 🚍 time\_tai\_doppler... (num\_doppler\_miti\_lines) (num\_doppler\_miti\_lines, num\_doppler\_miti\_pixels, complex\_d... float64 ... 🖹 🚍 doppler miti ⊢ Indexes: (0)

▼ Attributes:

description :

sig0

KaRIn bias-corrected interferogram and associated information for the half swath to the righ t (when facing the velocity direction) of the nadir track.

![](_page_24_Figure_1.jpeg)

## **Data availability (forward processing)**

- Missing products monitoring (FWD production).
- Almost all of them are related to specific events
- After HPA- restart (cycle 454 / March 9th) 82% of the products are nominally produced in FWD mode.
- A few of these missing products will be available in the « Fall » reprocessing

![](_page_25_Figure_5.jpeg)

#### Data availability over open ocean is excellent:

 ✓ 0,03 % of missing measurements over Ocean (for swath ranged [10;60]km and excluding eclipse events.

#### • Missing segments at eclipse location.

- conservative choice before launch to flag data close to eclipse entries/exits as 30°N bad.
- Up to now, L2 processing discards those segments
- For « fall » reprocessing, will be kept, processed (and flagged suspect as quality still has to be examined; first inspections do not show visible artifacts).

#### Missing measurements over land

- Time, and most of variables regularly set to default values. Up to now, processing discarded data when distance to water is >10 km.
- For « Fall » reprocessing, will now be kept, but quality of data over land/ice/... has not been thoroughly investigated

![](_page_26_Figure_10.jpeg)

## **SSHA KaRIn availability: missing measurements**

80

latitudes

Data availability over open ocean is excellent:

 0,03 % of missing measurements over Ocean (for swath ranged [10;60]km and excluding eclipse events.

#### • Missing segments at eclipse location.

- conservative choice before launch to flag data close to eclipse entries/exits as bad.
- Up to now, L2 processing discards those segments
- For « fall » reprocessing, will be kept, processed (and flagged suspect as quality still has to be examined; first inspections do not show visible artifacts).

#### Missing measurements over land

- Time, and most of variables regularly set to default values. Up to now, processing discarded data when distance to water is > 10 km.
- For « Fall » reprocessing, will now be kept, but quality of data over land/ice/... has not been thoroughly investigated

![](_page_27_Figure_10.jpeg)

eclipse events [all events]

2023-01 2023-02 2023-03 2023-04 2023-05 2023-06 2023-07 2023-08 2023-09 2023-10

cnes

Orbit change

## **Editing & data quality**

- 2% of edited measurements on average over open ocean.
  - $\checkmark$  3.2 % for Jason class altimeters.
  - A little more data edited at the edge of the swath ([10;60]km)
- Most of rejected measurements are located in heavy rain areas (up to 8% in specific areas)

![](_page_28_Figure_5.jpeg)

![](_page_28_Figure_6.jpeg)

# Rain events impact the Ka Band radar signal.

- ✓ Sigma0 attenuation observed
- SSHA is biased (not systematically)
  ongoing studies to caracterise relationship between sigma0 attenuation and impact on the SSHA.
- Rain flag available in L2 products (derived from ECMWF model) is not accurate enough
- New offline flag definition based on sigma0 attenuation improves significantly the rain detection

![](_page_29_Figure_6.jpeg)

#### cycle 454 / track 018 / 2023-03-09 16:04:19

![](_page_29_Figure_8.jpeg)

## **Editing & data quality: rain impact**

# Rain events impact the radar signal (Ka Band).

- ✓ Sigma0 attenuation observed
- SSHA is biased (not systematically)
  ongoing studies to caracterise relationship between sigma0 attenuation and impact on the SSHA.
- Rain flag available in L2 products (derived from ECMWF model) is not accurate enough
- New offline flag definition based on sigma0 attenuation improves significantly the rain detection

![](_page_30_Figure_6.jpeg)

![](_page_30_Figure_7.jpeg)

 Current KaRIn SWH (1 estimate for each swath) is produced without any calibration of volumetric decorrelation.

 Fall reprocessing will add a calibration and use a new algorithm providing 2D maps of SWH at 2km resolution. (cf A. Bohe presentation in Waves Working Group)

![](_page_31_Figure_3.jpeg)

## **KaRIn wind preliminary Assessment**

![](_page_32_Figure_1.jpeg)

Pre-launch GMF used for wind inversion up to now leads to underestimates at low (<10m/s) winds and overestimates at high wind.

Fall reprocessing will use a new GMF (cf A. Bohe presentation in Waves Working Group)

## **SSHA PSD : MSS errors**

#### Science Orbit: SSHA KarIn\_2 with MSS model from 2015

![](_page_33_Figure_2.jpeg)

- Smaller scales of the geoid are poorly known in many regions: the error is correlated (fake eddies are seen in KaRIN SSHA)
- The MSS model is currently a major contributor to the SSHA : hump-shaped artifact from 15 to 50 km
- For smaller scales, the geoid error is likely still here but hidden by ocean geophysical signals & errors
- With the most recent MSS model (SIO/CLS/DTU hybrid v2023, in development) the hump disappears (geoid error divided by 3)
- The SSHA spectrum is then perfectly linear and well-behaved : not dominant error anymore, but MSS errors are still visible locally in many places

Science Orbit (MSS updated 2023H-alpha2

les

## **SSHA PSD : CalVal vs Science orbit**

CalVal Orbit (MSS updated 2023H-alpha2)

#### Science Orbit (MSS updated 2023H-alpha2)

![](_page_34_Figure_2.jpeg)

- Both orbits yield very consistent SSHA spectra (KaRIn still performing well)
- The random noise plateau changes on 21-day orbit (more noise in swath center & near-range)
- The 1-day orbit has some near/range PSD discrepancies from mesoscale as expected: eddies repeatedly sampled on 1 day orbit
- The 21-day PSD is smoother and consistent: global ocean, PSDs reflect the mean ocean variability
- The near/medium/far range are not aligned (because of random noise, more energy on the swath edges)

cnes

## **SSHA PSD : comparison with nadir altimetry**

KaRIn SSHA power spectrum compared with other missions

![](_page_35_Figure_2.jpeg)

cnes

#### SSHA PSD : slope break near 70 km

![](_page_36_Figure_1.jpeg)

In the grey box a constant scalar value was estimated (noise floor) and removed from each PSD. When this is done, the grey & black spectra align very well below 100 km (i.e. the slope break and k<sup>-2</sup> signal is the same in near and far range). That might tend to rule out waves as the cause since they tend to have range-specific behavior.

## A rich new phenomenology to understand

![](_page_37_Figure_1.jpeg)

![](_page_37_Figure_2.jpeg)

![](_page_37_Figure_3.jpeg)

Understanding to what extent these correlations are geophysical or errors from the measurement (SSB, wet tropo etc...) is likely a topic for a long time !

cnes

|      |      |      |     |     |     |     |     | - and |     | -   | 20  |     |     |     |      |      |      |      |      | 46   |      |      |
|------|------|------|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|
| -0.3 | -0.2 | -0.1 | 0.0 | 0.1 | 0.2 | 0.3 | 1.0 | 1.2   | 1.4 | 1.6 | 1.8 | 2.0 | 2.2 | 2.4 | 11.0 | 11.5 | 12.0 | 12.5 | 13.0 | 13.5 | 14.0 | 14.5 |
|      |      |      | m   |     |     |     |     | m     |     |     |     |     |     |     |      |      | dB   |      |      |      |      |      |

## A rich new phenomenology to understand

![](_page_38_Figure_1.jpeg)

![](_page_38_Figure_2.jpeg)

![](_page_38_Figure_3.jpeg)

![](_page_38_Picture_4.jpeg)

cnes ·

![](_page_39_Figure_1.jpeg)