

SWOT IN-SITU AND AIRBORNE VALIDATION CAMPAIGN IN THE ST. LAWRENCE ESTUARY AND SAGUENAY FJORD

Pascal Matte¹, Marc Simard², David Purnell³, Alexandra Christensen², Michael Denbina², Mohammed Dabboor¹, Silvia Innocenti¹, Cédric Chavanne⁴, Abïgaëlle Dussol⁴, Mohammed Amine Bessar³, François Anctil³, Vincent Fortin¹, Dany Dumont⁴

¹Environment and Climate Change Canada, Government of Canada, QC, Canada
²Jet Propulsion Laboratory, California Institute of Technology, CA, USA
³Université Laval, Département de génie civil et génie des eaux, QC, Canada
⁴Institut des Sciences de la Mer (ISMER), Université du Québec à Rimouski, QC, Canada

SWOT Science Team Meeting September 18-22, 2023

STUDY SITES

1. St. Lawrence Estuary

- 1-25 km wide with numerous islands
- Spatially variable macro-tides (<7m range)

×10⁶ 5.26

5.25

5.24

5.21

5.2

5.19

5.6

58

5.23 **(E)** 5.22 M₂tide

amplitude

6.2

x (m)

6.4

imes10⁵

- Reversing flows
- Salinity intrusion limit
- River influenced
- Internal tides

2. Saguenay Fjord

• 2-4 km wide, <270 m deep, with <350 m high cliffs

2.05

1.95 E

1.9

1.85

1.8

1.75

Processing steps with SPDLib (Bunting et al. 2013)

- 1. Spatial indexing
- 2. Noise reduction and outliers removal
- 3. Progressive morphology filter
- 4. Gridding and interpolation
- 5. Water/land delineation
- 6. Validation

Type of measurement	M AE [m]	RMSE [m]
Ground control	0.0465	0.0613
Tide gauge	0.1886	0.3450
Wave buoy	0.0733	0.0794

Pre-launch cal/val objectives (2020-2022)

- Characterize the 2D variability
 - Tides, water surface slopes, waves, currents, etc.
 - Test instrumentation and monitoring strategies
- Improve numerical models
 - Calibrate and validate models using 0D-1D-2D data

Test algorithms with SWOT-like data

- Tides and discharge reconstruction

Data assimilation

350

300

250

200 5

150

100

-50

LIDAR GRIDDED ELEVATIONS

Head of Laurentian Channel

- Low tide conditions
- Sep 15, 2020

POST-LAUNCH CAL/VAL + SCIENCE VALIDATION

SWOT Cal/Val Orbit

- Pass 9
- Ascending

SWOT Science Orbit

- 3 ascending (Passes 35, 313, 341)
- 4 descending (Passes 214, 242, 520, 548)

IN-SITU GAUGES

- 11 tide gauges + 5 pressure transducers (May-Oct 2023)
 - Continuously measure tides and water surface slopes
 - Validate AirSWOT and numerical models
 - Validate SWOT water surface elevations and slopes

Pressure transducer @ Pointe-aux-Orignaux + RTK surveying

GNSS-IR

- 13 GNSS-Interferometric Reflectometry (GNSS-IR) (Mar 2023 ongoing)
 - Continuously measure tides, water surface slopes, waves, ice
 - Validate AirSWOT and numerical models
 - Validate SWOT water surface elevations and slopes under contrasting wave and ice conditions

CAMERAS

- 2 cameras (Mar 2023)
 - Observe surface conditions (ice distribution/roughness, waves)
 - Correlate with colocated GNSS-IR measurements
 - Assess SWOT performance under contrasting surface types and roughness

HF RADARS

- 4 high-frequency (HF) radars + 2 wave buoys (May 2023 ongoing)
 - Measure hourly surface currents and waves at ~1 km resolution
 - Resolve mesoscale and submesoscale structures
 - Separate contributions of balanced and unbalanced motions to SWOT sea surface height

ADCP

• 1 fixed H-ADCP (May-Oct 2023) + repeated ADCP transects (3 days, 2 boats, 6-8 June 2023)

- Measure currents and discharge continuously (fixed H-ADCP) and over a tidal cycle (boat-mounted ADCP) in the main river and channels around islands
- Reconstruct discharge from index-velocity relationships or multiple-gauge water levels
- Validate SWOT discharges at SWORD reaches + test new algorithms

Measured discharges from -55,000 m³/s to 55,000 m³/s

AIRSWOT

- AirSWOT survey 4 flights (22,23,29,31 Aug 2023)
 - Measure tides and water surface slopes over repeated flights
 - Evaluate SWOT along- and cross-swath errors
 - Calibrate/validate numerical models

