





# SWOT SCIENCE TEAM MEETING SINGLE CHANNEL RIVERS

Toulouse - 20/09/2023

## CALVAL ACTIVITIES

Collect In-situ Data

- Automatic vorteX-io Micro-Stations
- Drone and Airplane lidar profiles
- PTs
- Existing gauges (Vigicrues, EDF, etc...)

### **1. VALIDATION OF SWOT PRODUCTS**

Process in-situ data

- GNSS processing
- Height and format harmonization (w. r. t. EGM08)
- Managing time delta and positioning
- Using local and **independent centerline** to complement SWORD



Compare to SWOT Products

• Independent from the SWOT processing

• Comparable to SWOT products

### **2. SWOT PRODUCT AND MEASUREMENT ANALYSIS**



#### MIMIC SWOT PROCESSING

- And changing parameters for analysis purposes
- And/or changing centerline for SWORD analysis purposes

SWOT ANALYSIS PRODUCTS



## **FIELD DATA**

• 2 "Super Cal/Val" Sites: Garonne River (Marmande) and Rhine River fully instrumented

Garonne River (Marmande)



- > 7 vorteX-io Micro-Stations
- > 18 PTs
- 4 drone profiles
- > 1 Airborne LiDAR
- > 2 Sentinel-3A tracks
- 1 Sentinel-6 track (allowing river profile computation
- > 4 Vigicrues gauges
  - Use of existing in-situ data elsewhere



**Rhine River (French part)** 



- 4 vorteX-io Micro-Stations
- > 24 EDF gauges
- > 4 Vigicrues gauges
- > 2 EMS gauges
- 5 WSA gauges

- 4 drone profiles
- 1 Sentinel-3A track
- > 1 Sentinel-6 track



### **EXAMPLE OF FIELD DATA**

#### In-situ gauges (vorteX-io and from national networks)



#### **Pressure sensors**



#### **Drone profiles on the Rhine River**



Water Surface Height IGN69 (m)

#### Drone profiles on the Garonne River



#### Airborne LiDAR





### **PROCESSING OF FIELD DATA**

### Generation of In-situ measurement to compare to a SWOT node

Get the reference height

- Select the closest in-situ sensor from the node
- ❖ Select the water altitude measured at the same time as
  SWOT measurement
  → reference height



- Select the height profile measurement
  - Use the drone flights (river profile)
  - Use airborne LiDAR campaign (river profile)



Select the **height profile measurement** performed at **the closest water elevation** to the reference height



Combine fixed and moving in-situ measurements

## Compute the **water elevation** at the **node position**



We correct the **reference height** using the **selected height profile** 



### **COMPARISON OVER THE GARONNE RIVER**

- Promising agreement between SWOT and in-situ data
- Discrepancies are noticeable in SWOT data due to issues in pixel classification and potential SWORD centerline approximations
- Analysis still ongoing (and will continue during Science Orbit phase)





cnes

### **COMPARISON OVER THE RHINE RIVER**

- Promising agreement between SWOT and in-situ data even in such difficult area (large dams, river arms close together and at different elevation), using an expert centerline (poorer agreement when using SWORD)
- Discrepancies are noticeable in SWOT data, potentially due to issues in pixel classification.
- Analysis still on going with additional gauges and applied on more SWOT cycles.



- Field data collection is going well with automatic vorteX-io Micro-Stations, in-situ gauges from EDF (data transmission on a weekly basis, regular drone campaigns)
- Very good collaboration with Cal/Val teams (CNES, CLS, SERTIT, CS, vorteX-io)
- First Cal/Val results are very promising w.r.t. SWOT performances
- Promising agreement between SWOT and in-situ data even in difficult areas
- Discrepancies are noticeable in SWOT data due to pixel classification issues, dark water and potential SWORD centerline approximations
- Analysis still on going for fine validation

