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1. What is the spatial variability in 
nonlinear supertidal energy?

2. What are the mechanisms that 
transfer this energy?

https://doi.org/10.20944/preprints202308.0856.v1


Methods
HYbrid Coordinate Ocean Model (HYCOM) 
• Operational global ocean model of the U.S NAVY
• 1/25° (4 km) and 41 layers
• Atmospheric forcing: 3-hrly wind and solar radiation
• Tidal forcing: M2, S2, N2, K1, O1 constituents 
• M2 RMSE with TPXO is 2.6 cm [Ngodock et al, 2016]

Diagnostics
• 30 days May/June 2019
• Bandpass hourly 3D fields into

D1: Diurnal
D2: Semidiurnal
HH: Supertidal/higher harmonics, >2.67 cpd

• Compute time-mean tidal and supertidal internal wave
energy terms:
• kinetic energy 𝐾𝐾𝐾𝐾 
• Energy flux 𝐅𝐅

Kinetic Energy spectrum off Amazon Shelf

M2 RMS error (cm) between HYCOM and TPXO8



Tidal and supertidal (HH) Kinetic Energy
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● Off the shelf in deep 
water D1+D2 energy is 
transferred to 
supertidal energy (HH) 

● This is clearly reflected 
in the supertidal flux 
divergence: ∇ � 𝐅𝐅HH

Energy fluxes near the Amazon shelf
Internal tide flux supertidal flux

∇ � 𝐅𝐅HH



● The regular spaced patches of positive flux 
divergence are observed at other hotspots 
of nonlinear internal waves: Bay of Bengal 
and Mascarene ridge, among others

● Two questions arise:

1. Can we explain the HH flux divergence with a 
term that considers the energy transfer from 
the D1+D2 to HH frequencies?

2. What mechanism causes the regular spaced  
banding patterns of HH flux divergence?



● The energy transfer to HH frequencies can 
be explained with coarse graining 
[Aluie et al., 2018; Barkan et al, 2021]

Π𝜏𝜏 = −𝜌𝜌0 �𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 − �𝑢𝑢𝑖𝑖 �𝑢𝑢𝑗𝑗
𝜕𝜕 �𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

      
     where  �. . .  is a 9-hour low-pass filter, and 
     i,j are x,y or z coordinates 

● The time-mean, depth-integrated HH 
energy balance looks like

Π𝜏𝜏 = ∇ ⋅ 𝐹𝐹𝐻𝐻𝐻𝐻 + ℛ

1) Energy transfer term



● The distance between the 
patches is larger than mode-1 
wavelength

● The patches are due to 
constructive interference 
between semidiurnal mode 1 
and mode 2 waves

● Mode 1 overtake mode 2 
waves generated at the shelf

● When mode 1 and 2 surface 
velocities superpose, surface 
KE and nonlinear energy 
transfers are enhanced

2) Regular spaced banding patterns
Surface KE
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Surface intensified KE 𝑢𝑢1  +  𝑢𝑢2  =  𝑢𝑢1 + 𝑢𝑢2

● An internal wave velocity field can be decomposed 
into vertical modes: 

𝑢𝑢(𝑧𝑧, 𝑡𝑡) = �
𝑛𝑛

�𝑢𝑢𝑛𝑛 𝑡𝑡 Φ𝑛𝑛 (𝑧𝑧)

● At any given depth, kinetic energy for m1-2 is

𝐾𝐾𝐸𝐸1+2 𝑧𝑧, 𝑡𝑡 =  �𝑢𝑢1 𝑡𝑡 Φ1 𝑧𝑧 + �𝑢𝑢2 𝑡𝑡 Φ2 𝑧𝑧  2 

 = �𝑢𝑢12Φ1
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● When 𝑢𝑢1 and 𝑢𝑢2 are in phase at the surface, 
𝐾𝐾𝐸𝐸1+2 is enhanced 

● Note, for the depth-integral, cross-term = 0 !!! 
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𝐾𝐾𝐸𝐸1+2 𝑧𝑧, 𝑡𝑡  d𝑧𝑧 = 𝐻𝐻 �𝑢𝑢12 + �𝑢𝑢22
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M2 SSSH amplitude comparison with altimetry (Mujeeb Abdulfatai)



Conclusions
● In 4-km HYCOM simulations, supertidal energy is enhanced in the tropics

● This energy is NOT due to barotropic to baroclinic energy conversion at topography,
but due to nonlinear energy transfers from the semidiurnal internal tide

● These energy transfers are estimated with a coarse graining energy flux Π𝜏𝜏
● Π𝜏𝜏  is enhanced when semidiurnal mode 1 and 2 velocities superpose near the 

surface, creating the banding patterns

● The banding patterns are also observed in altimetry and other model simulations

● These supertidal energy transfers have been ignored as a decay mechanism for the 
low-mode internal tides

● In the tropics, area-integrated Π𝜏𝜏 ≈ 45 GW, which is comparable to PSI (≈ 40 GW; 
Ansong et al., 2018)
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