Nonlinear internal tides in a global HYCOM simulation

Solano et al, Nonlinear internal tides in a realistically forced global ocean simulation, in review Journal of Geophysical Research – Oceans Preprints 2023, 2023080856. <u>https://doi.org/10.20944/preprints202308.0856.v1</u>

Methods

HYbrid Coordinate Ocean Model (HYCOM)

- Operational global ocean model of the U.S NAVY
- $1/25^{\circ}$ (4 km) and 41 layers
- Atmospheric forcing: 3-hrly wind and solar radiation
- Tidal forcing: M₂, S₂, N₂, K₁, O₁ constituents
- M₂ RMSE with TPXO is 2.6 cm [Ngodock et al, 2016]

Diagnostics

- 30 days May/June 2019
- Bandpass hourly 3D fields into D1: Diurnal
 - D2: Semidiurnal
 - HH: Supertidal/higher harmonics, <a>>2.67 cpd
- Compute time-mean tidal and supertidal internal wave energy terms:
 - kinetic energy KE
 - Energy flux **F**

M₂ RMS error (cm) between HYCOM and TPXO8

Tidal and supertidal (HH) Kinetic Energy

1) Bay of Bengal

2) Amazon

3) Mascarene

Energy fluxes near the Amazon shelf

- Off the shelf in deep water D1+D2 energy is transferred to supertidal energy (HH)
- This is clearly reflected in the supertidal flux divergence: $\nabla \cdot \mathbf{F}_{HH}$

- The regular spaced patches of positive flux divergence are observed at other hotspots of nonlinear internal waves: Bay of Bengal and Mascarene ridge, among others
- Two questions arise:
 - 1. Can we explain the HH flux divergence with a term that considers the energy transfer from the D1+D2 to HH frequencies?
 - 2. What mechanism causes the regular spaced banding patterns of HH flux divergence?

1) Energy transfer term

 The energy transfer to HH frequencies can be explained with coarse graining [Aluie et al., 2018; Barkan et al, 2021]

$$\Pi_{\tau} = -\rho_0 \big(\widetilde{u_i u_j} - \widetilde{u_i} \widetilde{u_j} \big) \frac{\partial \widetilde{u_j}}{\partial x_j}$$

where $\widetilde{\ldots}$ is a 9-hour low-pass filter, and *i*,*j* are *x*,*y* or *z* coordinates

 The time-mean, depth-integrated HH energy balance looks like

$$\langle \overline{\Pi_{\tau}} \rangle = \langle \overline{\nabla \cdot F_{HH}} \rangle + \mathcal{R}$$

2) Regular spaced banding patterns

- The distance between the patches is larger than mode-1 wavelength
- The patches are due to constructive interference between semidiurnal mode 1 and mode 2 waves
- Mode 1 overtake mode 2 waves generated at the shelf
- When mode 1 and 2 surface velocities superpose, surface
 KE and nonlinear energy transfers are enhanced

Surface KE

Surface intensified KE

• An internal wave velocity field can be decomposed into vertical modes:

$$u(z,t) = \sum_{n} \hat{u}_{n}(t)\Phi_{n}(z)$$

• At any given depth, kinetic energy for m1-2 is $KE_{1+2}(z,t) = (\hat{u}_1(t)\Phi_1(z) + \hat{u}_2(t)\Phi_2(z))^2$

 $= \hat{u}_1^2 \Phi_1^2 + \hat{u}_2^2 \Phi_2^2 + 2\hat{u}_1 \hat{u}_2 \Phi_1 \Phi_2$

- When u_1 and u_2 are in phase at the surface, KE_{1+2} is enhanced
- Note, for the depth-integral, cross-term = 0 !!!

$$\int_{-h}^{0} KE_{1+2}(z,t) \, \mathrm{d}z = H(\hat{u}_{1}^{2} + \hat{u}_{2}^{2})$$

M₂ SSSH amplitude comparison with altimetry (Mujeeb Abdulfatai)

Conclusions

- In 4-km HYCOM simulations, supertidal energy is enhanced in the tropics
- This energy is NOT due to barotropic to baroclinic energy conversion at topography, but due to nonlinear energy transfers from the semidiurnal internal tide
- These energy transfers are estimated with a coarse graining energy flux $\langle \overline{\Pi_{\tau}} \rangle$
- $\langle \overline{\Pi_{\tau}} \rangle$ is enhanced when semidiurnal mode 1 and 2 velocities superpose near the surface, creating the banding patterns
- The banding patterns are also observed in altimetry and other model simulations
- These supertidal energy transfers have been ignored as a decay mechanism for the low-mode internal tides
- In the tropics, area-integrated $\langle \overline{\Pi_{\tau}} \rangle \approx 45$ GW, which is comparable to PSI (≈ 40 GW; Ansong et al., 2018)