

Surface Water and Ocean Topography (SWOT) Mission

September 2023

CNES: <u>Matthias Raynal</u>, G. Dibarboure, A. Bohe, F. Bignalet-Cazalet, N. Picot

CLS: P. Prandi, E. Cadier, F. Nencioli, F. Briol, A. Delepoulle, B. Flamant, M. Denneulin

Fluctus: B. Picard

DATLAS: C. Ubelmann JPL ADT team

SWOT Phase E1 Results 21-d orbit early CalVal results over Ocean

Some Ocean CalVal results from 1D orbit were presented:

- ✓ On Tuesday by A. Bohe for KaRIn L2 LR products
- ✓ On Wednesday by F. Bignalet-Cazalet on SWOT-nadir IGDR products
- Overview of early results from 21d orbit and assessment of the continuity with the CalVal orbit.: Do we see any specific changes in terms of data quality ?

Two different orbits, different kind of analyses

- ✓ 1D orbit analyses essentially based on the day to day signal evolution
- ✓ 21D orbit provides a much complete geographical sampling of the open ocean and ease the regional CalVal analyses.

Nadir Altimeter L2 products (L2_NALT) for science orbit

- OGDR (real-time latency) → Available on flow
 - OPR "reduced" → SSHA and limited among of variables
 - OPN "native" → all variables @ 1 Hz and 20 Hz
- IGDR (short time critical) → Available on flow
 - IPR "reduced"
 - IPN "native"
 - IPS "sensor" → also include waveforms
- GDR (no time critical) \rightarrow Available later in 2023

SWOT nadir

Nadir preliminary performance over ocean in science orbit

• Very good thermal and stability behavior of POS-3C

- All IGDR metrics are very close to IGDR in Cal/Val orbits
 - STD SLA = 9,9 cm
 - STD (SWOT nadir SLA DUACS SLA) = 4,4 cm
 - SWOT/SWOT Xovers STD = 5,6 cm
 - SWOT/S6 LR Xovers STD = 5,1 cm

SWOT/SWOT Xovers STD

SWOT nadir

Nadir preliminary performance over hydro targets in science orbit

• POS-3C is in Close-Loop acquisition mode.

New DEM for science orbit is upload, it will be activated in coming days.

- Aiready excellent tracking performances observed in CL with more 70% of successful acquisitions over the virtual stations defined.
- Will significantly be improved with OL acquisitions

Cycle N° 427 (Cal/Val phase: 10/02/2023) % **OK: 61,4**

Cycle N° 1 (Science phase) % OK: 71,3

Editing global results over 21d orbit

Tips:

- Simplest way to select valid measurements is to use ssha_karin(_2)_qual == 0
- However some large transects might be edited on « suspect_model_swh_ssb_used » criteria, raised when nadir data is missing or corrupted.
- → Solution: also includes this byte in the selection.
- Global percentage of valid data is excellent ~ 96% → close to Jason altimeters metrics (~97%).
- Little effect of SWH → KaRIn signal behaves very well over strong sea states,
- Most of the pixels edited are located in heavy rain areas (Ka-band is more rain sensitive than Ku band)
 - When SSHA is impacted KaRIn measurements are generally correctly flagged in Ssha_karin_2_qual

Further work on the editing strategy is ongoing

- Assess the data quality of measurements flagged as suspect
- ✓ Use of statistical method

Rain flagging (reminder)

KaRIn & SWOT nadir SWH analysis

• Improvements expected with future PGE delivery (October) : discussed / presented by A. Bohe in W&W WG

KaRIn & SWOT nadir sigma0 / Wind speed

KaRIn & SWOT nadir sigma0 / Wind speed

Expected wider distribution for Ka band Similar behaviour from 1d to 21d orbit \bullet

Pre-launch GMF not accurate enough.

0

Improvements expected with future PGE delivery (October) : presented by A. Bohe in W&W WG

cnes

AMR analyses

- The two sides are well intercalibrated (below 1 K of biases on the 3 channels)
- → very small systematic bias on the difference of the WTC (about 0.2 cm)

- For about 90% of the AMR-C measurements, no cross-track artificial slope expected for the KaRIn interpolated WTC
- For about 10% of the open ocean measurements (all sky), a cloudy situation is observed on 1 side only
 investigation over the crosstrack slope in these specific cases

Nb records =	% of records	DWTC: mean	DWTC: stdev
17 910 524			
Side 1 only is	1.6 %	-0.2 cm	1.4 cm
contaminated			
Side 2 only is	1.7 %	-0.1 cm	1.6 cm
contaminated			

Nb records = 10 424 087	% of records	Δ WTC: mean	∆WTC: stdev
Both sides are clear sky	46.5 %	-0.2 cm	1.4 cm
Both sides are cloudy	34.4 %	-0.2 cm	1.6 cm
Side 1 only has LWP > 0	8.1 %	-1.1 cm	1.6 cm
Side 2 only has LWP > 0	11 %	+0.7 cm	1.4 cm
Side 1 only has LWP > 0.01	6.6 %	-1.3 cm	1.7 cm
Side 2 only has LWP > 0.01	8.8 %	+0.8 cm	1.5 cm
Side 1 only has LWP > 0.1	1.8 %	-2.3 cm	2.0 cm
Side 2 only has LWP > 0.1	2.2 %	+1.7 cm	1.9 cm

AMR analyses

- Very small cross-track bias bias compared to ECMWF & GMI
- Low standard deviation of differences, expected « W » shape observed, with slightly lower errors on the left swath.
- (not shown) SSHA error reduction at KaRIn/KaRIn crossover ~-1.4 cm² (-1.6 cm² for Sentinel-6 MF). To be consolidated with longer time series

AMR analyses

- Good agreement between the 3 variables above 100 km wavelengths (model has lower energy).
- GMI & ECMWF content at HF is lower : explained by the products spatial resolution
- Comparison between SWOT WTC vs GMI shows very encouraging results:
 - consistent with / below requirements allocation for wavenumbers > 100 km
 - Below hundred of km: SWOT WTC missed a part of the WTC signal (interpolation + beam resolution).
 The GMI reference is too smooth to quantify this omission error.
 - Need higher spatial resolution reference.

13 | @ cnes

cnes

KaRIn SSHA analysis

• **REMINDER**:

- ✓ L2 SSHA long wavelengths are affected by « systematic errors » (e.g. from roll error knowledge)
- ✓ The « crossover » correction will remove most of this error (see G. Dibarboure presentation)
- ✓ Below1000 km, these systematic errors are much smaller than the oceanic signal

KaRIn SSHA analysis

- Improved performances were expected for 21d orbit (more crossovers, better geographical sampling)
- Corrected SSHA variance is higher than expected:
 - The V4.2 XoverCal is tuned for 1d orbit (implemented in June 2023).
 - Some limitations were found (see G. Dibarboure dedicated presentation)
- ➔ Correction and deployment of XoverCal V4.3 in October.

KaRIn SSHA analysis: High pass filtered SSHA

KaRIn / SWOT nadir « HF » (below 1000km) SSHA differences

Along-track illustration (no

Far range selection Geographical binning

-0.02

Near range selection Geographical binning

SSHA PSD

- Very similar spectral behaviour from 1day orbit to 21day orbit
 - Ocean & wave conditions sampled are not exactly similar.
- Small change observed at High frequencies comparing far,near and middle range psds
 - Possibly explained by the altitude change
 - ✓ Sampling area
 - Sea states conditions

• HF content estimated from Unsmoothed SSHA (plateau fit & integral)

Slight change in cross-track direction near and far range are more aligned.

 \checkmark To be assessed with better description of sea state conditions (wave period,

cnes

- Poseidon-3C and KaRIn behave very well and similarly on both CalVal & Science Orbits
- An important work has been achieved to pre-validate the KaRIn products, analyse the KaRIn topography signal. Results presented are just a global overview.

Much remains to be done and it will require

- Investigations performed over the two orbit phases
- The Science Team expertise
- Extensive use of nadir constellation / other sensors / models / insitu measurement ...