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associated ageostrophic divergence is small compared to
the jet’s vorticity and strain (points with jDj ! jzj would lie
on s5 jzj line). Barkan et al. (2019) has, however, revisited
this problem using asymptotic theory appropriate to sub-
mesoscale frontogenesis in the ocean’s well-mixed surface
layer. They show that when fronts are in turbulent thermal
wind balance (TTWB, Gula et al. 2014), with Ro ; O(1)
the associated ageostrophic divergence scales like the
vorticity and strain, i.e., jDj; jzj; s, which for ideal fronts
[Eq. (4)] would correspond to points further above the s 5 jzj

on the JPDF (e.g., points with jDj ’ jzj would lie on the
line s’

ffiffiffi
2

p
jzj).

This oceanic regime, where the divergence is comparable in
strength to strain and vorticity, is present in our simulation.
The conditional mean divergence (Dzs, Fig. 6) highlights the
presence of rapid convergence in SD regions. We also consider
a 3D JPDF of strain-vorticity divergence, presented as a series
of slices at various values of divergence in Fig. 6. Surface flows
with the strongest convergence and divergence, D/jf0j ; O(1)
lie almost exclusively in the SD region, in contrast to AVD and

FIG. 4. Surface vorticity–strain based flow decomposition. (a) Surface vorticity and (c) surface strain in a large-scale anticyclonic
meander downstream of the ridge (dashed box in Fig. 2). (b) The JPDF corresponding to this region. Bottom row shows the surface
vorticity decomposed based on where the grid points lie in the JPDF; corresponding to the (d) AVD, (e) CVD, and (f) SD regions.

FIG. 5. Properties of a typical front. (a) The surface temperature, (b) surface vorticity, (c) surface strain, and (d) the vorticity–strain
JPDF in a region with a strong front. A depth-across front section of the (e) temperature, (f) vertical velocity, and tracer on days (g) 8 and
(h) 10 after the tracer forcing is turned on. The black contours in (a), (e), (f), (g), and (h) are some chosen temperature contours to
highlight the front. The yellow contours in (e) show the meridional velocity, which is northward, decaying away from the front.
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Goal
Develop methods to infer vertical transport from 
SWOT SSH: need wave-free frontal divergence

Results & Approach 
• SWOT is beating expectations, observing true submesoscale 

• At these scales, inertia-gravity waves (IGWs) and 
frontogenetic (FG) flows reduce the accuracy of geostrophy 

• IGWs don't contribute to vertical transport [B18] 

• FG flows do contribute to vertical transport [B18, B21] 

• Lack dynamics-based model to infer FG flow from SSH 

• But if vorticity ζ, strain σ, divergence δ are known, JPDFs 
parse flows into structures [B21]  

Use Convolutional Neural Networks (CNN) to 
learn velocity statistics directly from SSH [X23]
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the details of JPDF and conditional mean calculation for dis-
crete ranges and finite data.

The JPDF has a distinct shape (Fig. 3); it is centered near the
origin, extends along lines of s 5 jzj, and is skewed with a
longer cyclonic tail. This shape is a robust feature and has been
previously noted in other numerical simulations (Shcherbina
et al. 2013; Rocha et al. 2016), as well as in real oceanic flows
(Shcherbina et al. 2013; Berta et al. 2020). This shape probably
arises from a balance between the strength of the large-scale
instabilities energizing the mesoscale eddying flow, which
produces a cascade of gradients to smaller scales, and the
smaller-scale instabilities and dissipation halting the growth of
gradients at the finest scales (discussed further in appendix C).
Thus, the exact extent of the JPDF might vary regionally and
seasonally (Rocha et al. 2016).

In this study, we decompose the regions of the JPDF, and
thus correspondingly the flow field, into three parts: anticy-
clonic vorticity dominated (AVD) regions (z , 0 and s , jzj),
cyclonic vorticity dominated (CVD) regions (z . 0 and s ,
jzj), and strain dominated (SD) regions (s $ jzj). The flow
decomposition for a snapshot from the 1-km simulation in a
subregion (delineated by the dashed square in Fig. 2a), con-
sidered here as an example, highlights that different coherent
flow features are contained in different regions (Fig. 4). The
flow in this snapshot is composed of a large anticyclonic swirl,
embedded with fronts and cyclones. The reliability of our ad
hoc separation in roughly parsing flow features is supported by
separately plotting in x–y space the vorticity corresponding to
the AVD, CVD, and SD regions. As expected, the panel cor-
responding to the AVD region shows the presence of a large
anticyclonic swirl, the CVD region shows the presence of small
intense cyclones, and the SD region shows filamentary vorticity
streaks that correspond to fronts.

c. Signatures of fronts

Strain dominated (SD) regions are ubiquitous in the ocean
and occupy the largest fraction of the surface area in the sim-
ulations (approximately 60%); SD regions that are also asso-
ciated with strong gradients in buoyancy (Fig. C1b) are
referred to as fronts (e.g., Fig. 5 shows the structure of a rela-
tively straight front from the 1-km simulation). At fronts, the
vertical velocities can coherently and adiabatically connect the
mixed layer and the interior if the front is deep (Fig. 5e), thus
making them central in our study. Here we describe the ca-
nonical structure of fronts and try to better understand how
they map onto the vorticity–strain JPDF.

During the process of frontogenesis, when a background
flow is causing the surface density gradient to increase, an
ageostrophic secondary circulation develops with a tendency
to restratify the front: upwelling on the lighter side and
downwelling on the heavier side. Typical submesoscale fronts
tend to be asymmetric, with stronger cyclonic vorticity, con-
vergence, and vertical velocity on the downwelling side of the
front (Thomas et al. 2008; Shcherbina et al. 2013), as is evident
in Figs. 5b and 5f. This asymmetry arises due to the vorticity
tendency, ›tz5 (f 1 z)›zw1 ! ! !, having an asymmetric re-
sponse to vortex stretching (McWilliams 2016). The vortex
stretching near the surface strengthens the cyclonic vorticity,

while compression strengthens the anticyclonic vorticity.
However, when Ro ; O(1) the cyclonic vorticity strengthens
more rapidly. Additionally, inertial instability also limits the
range of anticyclonic vorticity that can be sustained (discussed
in appendix C).

The downwelling velocities at fronts can be very strong,
10–100m day21, and have the potential to rapidly transport
tracers to depth. We see signatures of this in Figs. 5g and 5h,
which shows that at the front the tracer penetrates as filaments
to a few 100m over the course of two days. In the particular
case considered here, the tracer filament is not always per-
fectly aligned with isopycnals, which highlights the three-
dimensionality of the transport process and is likely a result
of alongfront variations. The upwelling side of the front—with
largely upward vertical velocity—is also a site where deeper
water is brought to the surface, as highlighted by tracer-free
anomalies sliding upward along the front into the mixed layer.

Fronts generally have a strain magnitude (Fig. 5c) that is
equal to or greater than the vorticity, with a negative (conflu-
ent) divergence in the cross-front direction. This can be un-
derstood by considering an ideal straight front and a local
coordinate system oriented such that the alongfront jet points
in the ŷ direction. The alongfront surface velocity component
y(x)ŷ decays away from a peak at x5 0 in both directions. The
front-strengthening confluent flow, represented by u(x)x̂ has
u(x). 0 for x, 0, and u(x), 0 for x. 0. Then all y derivatives
of the velocity vanish, and the definitions in (1) and (2) can be
combined to show that

s2 5 z2 1D2 . (4)

This suggests that in the vorticity–strain JPDF (Fig. 5d) the
ideal front will have vorticity and strain values that lie above
the s5 jzj lines, at a distance that is determined by the strength
of the surface divergence.

In the Hoskins and Bretherton (1972) classical theory of
frontogenesis, with scaling for the atmospheric mesoscale, the

FIG. 3. Surface vorticity–strain JPDF for the 1-km simulation.
The gray contour lines correspond to the outer limits [P(z, s) 5
1025] for the JPDFs from the 1-, 5-, and 20-km simulations, with the
innermost contour corresponding to the lowest resolution and the
outermost contour corresponding to the highest resolution. In this
and all following plots on the z/f0 vs s/jf0j plane, the dashed lines
are thes5 jzj lines. These lines demarcate the boundaries between
the strain dominated (SD), anticyclonic vorticity dominated
(AVD), and cyclonic vorticity dominated (CVD) regions.
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Figure 9. LLC4320 Region 3 true winter vorticity (a) and reconstructed winter vorticity

(b);Region 3 true summer vorticity (c) and reconstructed summer vorticity (d).

In Figure 10 we show the vorticity-strain JPDF for Region 3 in winter and sum-390

mer. Because of the extra complexity introduced by the strengthening of inertia grav-391

ity waves, in neither season could the machine learning model produce a result as good392

as that for the channel simulation. For winter, though su↵ering more from missing ex-393

treme values, the shape of the JPDF is still consistent with the truth.394

The JPDF for summer is more severely distorted. The predicted joint distribution395

doesn’t fall into either the wave-dominated or turbulence-dominated regime we have seen396

above. The marginal distribution of vorticity is roughly reproduced, but the distribu-397

tion of strain becomes more concentrated at small values. The small-scale large vortic-398

ity values (likely from the southeast part of the Region 3 domain) are replaced by smoothed399

small values, most obvious in the summer (the same is true for strain, not shown). This400

suggests that the Unet isn’t able to properly reconstruct IGW vorticity and strain. It401

remains a question if this is because the model wasn’t able to distinguish the wave sig-402

nal from the SSH, or because it couldn’t find a way to transform the wave signal it sees403

in SSH to vorticity and strain.404

The Unet’s reconstruction of divergence behaves particular poorly when measured405

in terms of correlation and skill. This is because, relative to strain and vorticity, diver-406
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Table 2. Correlations and prediction skills for the kinematic fields reconstructed using the

Unet model against those computed from the true LLC4320 simulation.

Variable ⇣winter �winter �winter ⇣summer �summer �summer

Correlation 0.9 0.81 0.5 0.84 0.63 0.5

Skill 0.57 0.67 0.15 0.46 0.55 0.15
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Figure 10. LLC4320 Region 3 true winter vorticity-strain JPDF (a) and Unet predicted

winter vorticity-strain JPDF (b); Region 3 true summer vorticity-strain JPDF (c) and Unet pre-

dicted summer vorticity-strain JPDF (d).

gence is dominated by wave signals. Despite this dramatic drop in both metrics, and a407

prediction skill as low as 0.15, Figure 11 suggests that the models give a prediction that408

preserves fronts and filaments in di↵erent scales, while much of IGW signal is reduced.409

The particularly poor ability of the neural net to capture IGW signals in divergence —410

and the potential advantages of this weakness — are discussed in the next section.411

5 Neural networks may automatically filter IGW divergence412

Here we show that the divergence associated with IGW cannot be estimated us-413

ing only SSH. This is because the same SSH anomaly can produce equal and opposite414

signed IGW surface divergence depending on the sign of the frequency, thus the relation-415

ship between the surface divergence and SSH is not one-to-one, but rather partly ran-416

dom.417

5.1 Expected values of wave and balanced divergence418

If we assume that the flow can be separated as a linear combination of a balanced419

part (motions in geostrophic or gradient-wind balance, including both mesoscale and sub-420

mesoscale, denoted by subscript ‘bal’) and a wave part (denoted by subscript ‘wave’),421

then using a mean squared error as loss function results in a neural network that pre-422

–15–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

To conclude, if we only want to extract information about the balanced flow from518

a SSH input that contains both balanced and wave signatures, using a neural network519

and reconstructing the divergence may be a reliable option.520
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Figure 14. (a) True raw divergence from the region of the LLC4320 simulation analyzed by

Jones et al. (2023), and (b) the Lagrangian filtered divergence from the same region. (c) Unet

predicted divergence trained on true divergence, and (d) Unet predicted divergence trained on

the Lagrangian filtered divergence.

6 Learning from limited data: Transfer Learning521

While training with simulation data, we can in theory continuously boost the per-522

formance by adding more complexity to the machine learning model and supplement-523

ing extra simulation data during training (if computing resources are not a limitation).524

However when working with real world observations, reliable observational data for train-525

ing is always scarce and likely insu�cient to train a model from scratch. One paradigm526

to overcome this challenge is to train a model with some closely linked dataset for which527

large-amount of data is available, and then fine-tune the model with task-specific data.528

This procedure is referred to as “transfer learning,” and the expectation is that the ‘knowl-529

edge’ learned previously could be transferred and thus compensate for the missing task-530

specific data. The intuition behind this is that universal representations could be learned531

even when a model is trained with non-task-related data. The first few layers of the model532

often learn to recognize lines and shapes in the input regardless of the task, and these533

features can be reused when we try to apply the model to more specific datasets. Though534

the theoretical understanding of transfer learning is still a topic of ongoing research, the535

adoption of this methodology has led to impressive results in practice. For example, Y. Wang536

et al. (2020) show that in many image classification problems, adding a few more new537

samples is su�cient to fine tune an existing model for new task.538

With SWOT-derived SSH data, we won’t have simultaneous high-resolution in-situ539

observations of the corresponding velocity field, and thus no “truth” with which to train540

a neural network model. In analogy to this problem, in this section we test whether trans-541

fer learning from the channel model could help a neural network reconstruct the surface542

kinematic variables from SWOT-like SSH data from the LLC4320 simulation.543

Specifically, here we pretrain a Unet with channel model simulation data using 40,000544

samples. During the training stage using the LLC4320 simulation data (which, again,545

consists of 30 days of 4-hourly snapshot data from Regions 1 and 2, for either summer546

or winter), all the weights from the pretrained model are allowed to be tuned. For com-547

parison, we also train a second model with randomly initialized weights using the LLC4320548
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True and UNET-predicted fields for region 3 (test), in summer (wavier) and winter (less wavy)

Vorticity-strain JPDFs, true and predicted, 
for summer and winter in region 3
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True vs UNET predicted δ
True and UNET-predicted divergence in winter for region 3, using both raw input and Lagrangian-
IGW-filtered velocities ([J23] and next poster!)

Even without pre-filtering waves, UNET 
learns nearly IGW-free divergence field!

Synthetic wave field JPDFs
Summer fields with shallower mixed 
layer have stronger IGW signal.  
Appears as high strain/low vorticity 
bump in JPDFs.

Vorticity-strain and vorticity-divergence JPDFs from synthetic surface 
wave field using GM spectrum and local stratification 
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(a) (b)
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(d)

Figure 5. Snapshots of (a) SSH and (b) vorticity normalized by f (strain and divergence

show similar structure, and so are not shown) from the synthetic internal wave model. Vorticity-

strain (c) and vorticity-divergence (d) JPDFs from the same data.

computing resources and the amount of data, the architecture of the neural network is267

no less critical than the width or depth for e�ciently building a useful model.268

Here we use a Convolutional Neural Network (CNN) (LeCun & Bengio, 1998), which269

is known for its ability to capture spatial patterns in 2D physical data. When passing270

the data within a layer, the CNN uses a set of ‘convolutional filters’ (a 3⇥3 matrix for271

example) to do convolutions with each local patch of the input before feeding the result272

to a point-wise nonlinear function to generate the output. Abstractly, this can be rep-273

resented274

Y
(k)
j = �

(k)

0

@�j +
c(k�1)X

i=1

Fij ⇤ Y (k�1)
i

1

A (4)275

where Y
(k)
j is the jth channel at layer k, and �

(k) is a nonlinear function that could be276

composite of activations, normalizations and poolings. The parameter �j is a scalar bias277

term, c(k�1) is the number of channels in layer (k � 1), and Fij is a filter matrix that278

transform Y
(k�1)
i to another feature space through the 2D cross-correlation ‘⇤’. During279

training, these filter matrices from each layer are believed to converge to representations280

in abstract feature space that are crucial for generating predictions.281

Upon experimentation with architectures, we find a specific type of CNN called a282

‘Unet’ (Ronneberger et al., 2015) to be especially e↵ective for our task. Originally pro-283
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example Vallis, 2017), the horizontal velocity amplitudes are221

û =
k! + ilf

!2 � f2
p̂ and v̂ =

l! � ikf

!2 � f2
p̂,222

where N is the buoyancy frequency, and f the Coriolis parameter. From the wave ve-223

locity, and taking p̂ to be real, the vorticity and divergence are224

⇣ =
fm

2

N2
p̂ cos (kx+ ly +mz � !t) and � = �!m

2

N2
p̂ sin (kx+ ly +mz � !t) (2)225

and the strain turns out to be just226

� =
p

⇣2 + �2. (3)227

The ratio of vorticity to divergence thus scales as O(|⇣/�|) ⇠ |f/!|. Because ! grows228

large relative to f as the horizontal wavenumber increases, at smaller scales divergence229

increasingly dominates vorticity, and then strain is approximated by divergence instead230

of vorticity.231

We test this simple argument by computing the JPDFs for a synthetic internal wave232

model (J. J. Early et al., 2021). This Matlab-based package generates linear internal waves233

following the Garrett-Munk spectrum (Munk, 1981) by numerically solving the linearized234

Boussinesq equations for a user-defined domain, with a specified background stratifica-235

tion and resolution. Here we use the mean stratification and resolution from the chan-236

nel simulation to compute its kinematic surface fields, and vorticity-strain and divergence-237

vorticity JPDFs; snapshots of SSH, vorticity, and the JPDFs are shown in Figure 5. The238

resulting JPDFs behave as predicted, and moreover bear resemblance the summertime239

JPDFs for region 1 of the summer LLC4320 data (Figure 4). The JPDFs for region 3240

of the summer LLC4320 data seem to indicate a superposition of submesoscale and IGW241

structures, especially so in the vorticity-divergence JPDF (bottom row of Figure 4), where242

the wave-dominated and front-dominated signatures are almost orthogonal to each other.243

In summary, statistics of surface vorticity, divergence and strain are robust indi-244

cators of surface flow features, and geostrophy does a poor job at reconstructing these245

from SSH fields at higher resolution (or smaller spatial scales). In the next section, we246

introduce the machine learning architecture used, and in the following sections show that247

this framework can be used to more accurately reconstruct these surface kinematic vari-248

ables.249

3 Deep Learning Model250

Neural networks, among other machine learning models, have gained a lot of at-251

tention in the atmosphere-ocean science community over the past few years and have shown252

better performance relative to traditional approaches for many tasks (Bolton & Zanna,253

2019; Manucharyan et al., 2021; Sinha & Abernathey, 2021; George et al., 2021). Briefly254

speaking, a neural network consists of several hidden layers that transform its input into255

the final output. Each hidden layer is a combination of multiple linear matrix multipli-256

cations or additions and a simple nonlinear element-wise function such as a sigmoid. The257

elements of these matrices are tuned during the training of the model using gradient de-258

scent. The number of operations in each layer (usually called the ‘width’ of a layer) and259

the number of layers in the whole network (usually called the ‘depth’ of a network) de-260

termine the capability or flexibility of a neural network.261

The theoretical basis for neural networks is the Universal Approximation Theorem262

(Hornik et al., 1989): given an arbitrarily wide or deep network, there exists a set of ma-263

trices, such that any continuous function can be approximated by the neural network264

as closely as desired. However, the Universal Approximation Theorem doesn’t provide265

a construction recipe for the target neural network. In practice, due to limitations on266
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Can be seen from divergence computed from SW 
dispersion relation for IGWs:  two branches (+/-) of 
frequency selected randomly result in unlearnable 
random field

⇣ = vx � uy

� =
q
(ux � vy)2 + (uy + vx)2

� = ux + vy

Strain:  

Vorticity: 

Divergence: 


