Geostrophic currents in the Great Lakes
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Abstract

Eighty-four percent of the surface freshwater in
North America is contained in the Great Lakes.
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SWOT Observations of Lake Ontario

The 1-day calibration orbit sampled eastern
Lake Ontario during April 2023. During this
period, Lake Ontario was weakly stratified with
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Lake Superior Averaged Currents

of geostrophic currents in Lake Superior

Left: Historical current meter observations (Beletsky et al. 1999) are largely

incoherent and do not resolve the circulation of the lake. Seven cross-lake

transects (red line) were conducted by the R/V Blue Heron during 6 days in
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Tidal and dynamic atmosphere corrections in Lake Superior

(a) Water level spectra at Duluth

Below: SSH comprises rapidly oscillating gravity modes

Below: Gravity modes are excited by tides, wind, and

Below: Time-averaged SSH (a) in the MITgem can be
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recovered from instantaneous SSH (b) by removing the
gravity modes using a simplified dynamical model. The
corrected SSH (c) provides estimates of geostrophic
velocity that are consistent with time-averaged SSH.

(seiches), an inverted barometer response, and a residual
quasi-geostrophic stream function. SSH is simulated here
using the MIT general circulation model with atmospheric
reanalysis forcing.

atmospheric pressure. These signals are recorded hourly
at 8 lake-level gauges. The first mode is an east-west
oscillation with 8 h period. The second mode is an
east-west oscillation with two nodes and a 5 h period.
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Conclusions

Preliminary SWOT observations from Lake Ontario reveal 1-5 cm SSH anomalies, 10-20 cm/s geostrophic currents,
and a k™ spectral slope consistent with geostrophic turbulence due to mixed-layer instabilities.

In situ observations in Lake Superior also reveal 10 cm/s geostrophic currents with a k™ spectral slope.
Dynamic atmosphere and tidal corrections can be predicted from normal mode dynamics and lake-level gauges.
Specialized corrections for wet troposphere and sea state bias are still needed.




