

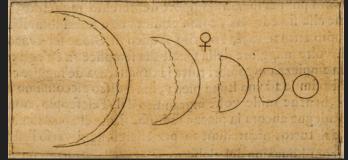
SWOT and Wide Swath Altimetry in the past, present, and future

Ernesto Rodriguez Jet Propulsion Laboratory, California Institute of Technology SWOT Science Team meeting, 2024-06-17

Galileo Galilei

Sunspots

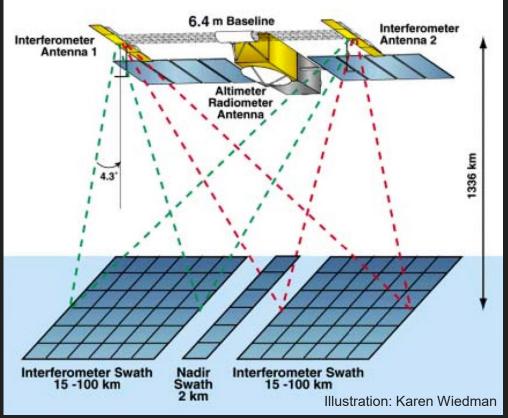
In praise of exploratory science To see what no one has see<u>n before...</u>



	Galileo's t	Ph	ase			
Ori.	*	*	0	*	Occ.	28.
Ori.	0	*	* *		Occ.	
Ori.	*	*	0		Occ.	

Moons of Jupiter: a mini solar system

Copyright California Institute of Technology 2024


Phases of Venus: our twin planet

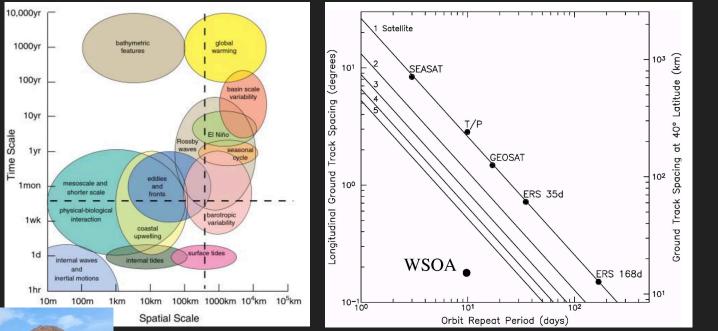
The Moon has mountains, like the Earth

Later Propulsion Laboratory Wide-Swath Ocean Altimetry (dob:1998-99)

New concepts:

Extend radar interferometry to nearnadir, achieving altimeter-like precision

Wide swath coverage by mapping on both sides of nadir track


Use nadir altimeter/radiometer for calibration and validation

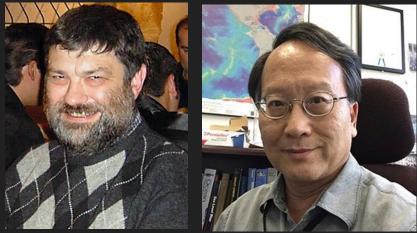
Go to higher frequencies (Ku-band) for a compact instrument and higher precision

HOTSWG Meeting at OSU (2000)

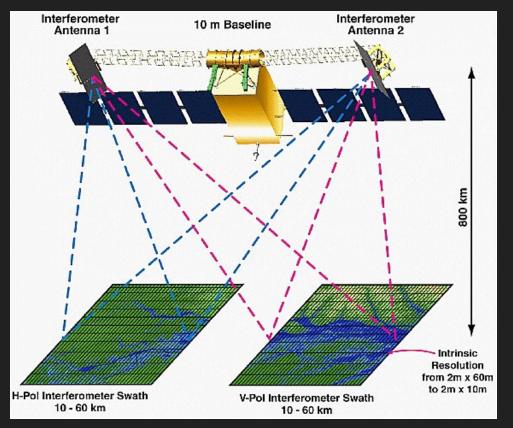
Ocean shoot-out between:

- near-nadir interferometry
- Multi satellite altimetry
 - GNSS heights

Near-nadir interferometry won



Chelton, D. B. (2001). Report of the High-Resolution Ocean Topography Science Working Group Meeting. *College of Oceanic and Atmospheric Sciences Oregon State University*.


Yves Menard

Lee Fu

Mission descoped by NASA near final reviews due to lack of funds

New concepts:

Enlarge user community to hydrology!

Use SAR to achieve spatial resolutions to O(10m)

Increase frequency to Kaband to achieve better precision at high spatial resolution

Rely on roll corrections using cross-overs only

Illustration: Karen Wiedman

Shoot-out in Irvine (2004)

120 km Swath Pulse Limited Swath 4 competing concepts for hydro evaluated at UC Irvine community meeting:

- SAR near-nadir interferometry
- Conventional altimetry
- Lidar altimetry
- GNSS height estimation

SAR near-nadir interferometry won

D. Lettenmaier D. Alsdorf

L. Smith

P. Bates T. Pavelsky

A. Cazenave

WATER Mission to ESA (2005)

Nelly Mognard

Doug Alsdorf

Proposal not selected because critical components were coming from the US

ESA 2nd thoughts: S3NG

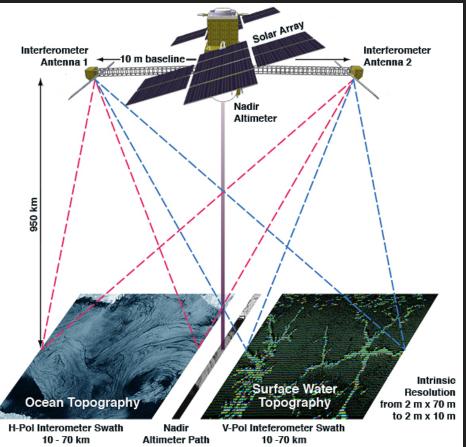
Resurrection: 2007 Decadal Survey

TABLE 2.1 Missions Recommended for NASA (or Joint with NOAA) in ESAS 2007

Decadal Survey			Rough Cost (FY 2006	
Mission	Mission Description	Orbit	Instruments	\$ Million)
2010-2013				
CLARREO (NASA portion)	Solar and Earth radiation, spectrally resolved forcing, and response of the climate system	LEO, Precessing	Absolute, spectrally resolved interferometer	200
SMAP	Soil moisture and freeze/thaw for weather and water cycle processes	LEO, SSO	L-band radar L-band radiometer	300
ICESat-2	lce-sheet height changes for climate change diagnosis	LEO, non-SSO	Laser altimeter	300
DESDynl	Surface and ice-sheet deformation for understanding natural hazards and climate; vegetation structure for ecosystem health	LEO, SSO	L-band InSAR Laser altimeter	700
2013-2016				
HyspIRI	Land surface composition for agriculture and mineral characterization; vegetation types for ecosystem health	LEO, SSO	Hyperspectral spectrometer	300
ASCENDS	Day/night, all-latitude, all-season CO ₂ column integrals for climate emissions	LEO, SSO	Multifrequency laser	400
SWOT	Ocean, lake, and river water levels for ocean and inland water dynamics	LEO, SSO	Ku- or Ka-band radar Ku-band altimeter Microwave radiometer	450
GEO-CAPE	Atmospheric gas columns for air quality forecasts; ocean color for coastal ecosystem health and climate emissions	GEO	High-spatial-resolution hyperspectral spectrometer Low-spatial-resolution imaging spectrometer IR correlation radiometer	550
ACE	Aerosol and cloud profiles for climate and water cycle; ocean color for open ocean biogeochemistry	LEO, SSO	Backscatter lidar Multiangle polarimeter Doppler radar	800

Two coordinated concept papers submitted:

Fu & Rodriguez for ocean


Alsdorf & Rodriguez for hydro

SWOT (coined by D. Lettenmaier & Kathy Kelly) recommended as a 2nd tier mission.

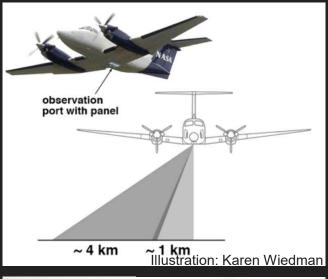
Nicolas Sarkozy had a big hand in making it a 1st tier mission: the "big loan" investment in 2011 was instrumental in advance SWOT

SWOT is born

New concepts:

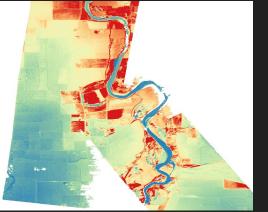

Non sun-sync orbit to avoid tidal aliasing

Solid interferometric mast to avoid vibrations and distortions


Onboard processing of ocean data to 250m resolution

Hydro data capable of achieving ~6m azimuth resolution

Illustration: Karen Wiedman



Delwyn Moller

NASA

Dragana Perkovic-Martin

Sacramento River Topography

First Dark Water

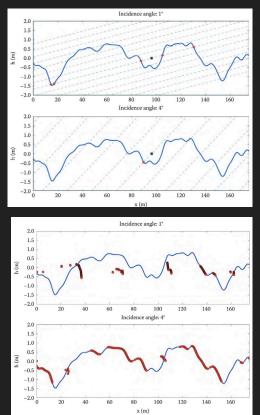
Observations

Jean-François Crétaux

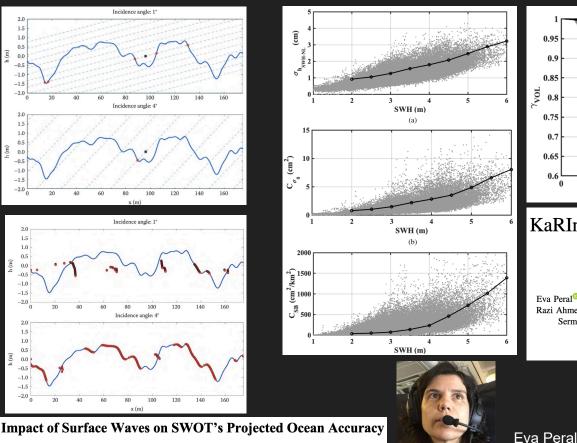
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 3, NO. 1, MARCH 2010

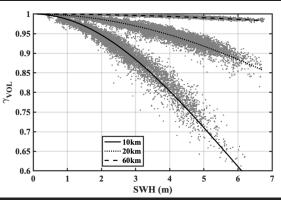
Estimating River Depth From Remote Sensing Swath Interferometry Measurements of River Height, Slope, and Width

Michael Durand, Ernesto Rodríguez, Douglas E. Alsdorf, and Mark Trigg


Kick-off: brain storming at UW with M. Durand, S. Biancamaria, K. Andreadis, N. Mognard, D. Lettenmaier in 2008 A first look at river discharge from SWOT satellite observations

Konstantinos M. Andreadis¹, Steve P. Coss², Michael Durand², Colin J. Gleason¹, Travis T. Simmons¹, Nikki Tebaldi³, David M. Bjerklie⁴, Craig Brinkerhoff¹, Robert W. Dudley⁵, Igor Gejadze⁶, Kevin Larnier⁷,
Pierre-Olivier Malaterre⁶, Hind Oubanas⁶, George H. Allen⁸, Paul D. Bates⁹, Cédric H. David³, Alessio Domeneghetti¹⁰, Luciana Fenoglio Marc¹¹, Renato Prate de Moraes Frasson³, Pierre-André Garambois¹², Jaclyn Gehring¹³, Augusto Getirana¹⁴, Marissa Hughes¹⁵, Jonghyun Lee¹⁶, Pascal Matte¹⁷, J. Toby Minear¹⁸, Jérôme Monnier¹⁹, Aggrey Muhebwa²⁰, Mohammad J. Tourian²¹, Tamlin M. Pavelsky¹⁵, Ryan M. Riggs²², Ernesto Rodríguez ³, Md Safat Sikder²³, Laurence C. Smith²⁴, Jay Taneja¹⁹, Angelica Tarpanelli²⁵, Jida Wang²³, Bidhyananda Yaday²⁶


Mike Durand


The surfboard effect: wave effects on height

Eva Peral *, Ernesto Rodríguez and Daniel Esteban-Fernández

KaRIn, the Ka-Band Radar Interferometer of the SWOT Mission: Design and **In-Flight Performance**

Eva Peral[®], Daniel Esteban-Fernández, Ernesto Rodríguez[®], Dalia McWatters, Jan-Willem De Bleser, Razi Ahmed^o, Albert C. Chen^o, Eric Slimko, Ruwan Somawardhana, Kevin Knarr, Michael Johnson, Sermsak Jaruwatanadilok[®], Samuel Chan, Xiaoqing Wu, Duane Clark[®], Kenneth Peters[®], Curtis W. Chen⁶, Peter Mao, Behrouz Khayatian, Jacqueline Chen, Richard E. Hodges¹⁰, Life Senior Member, IEEE, Dhemetrios Boussalis, Bryan Stiles, Member, IEEE, and Karthik Srinivasan

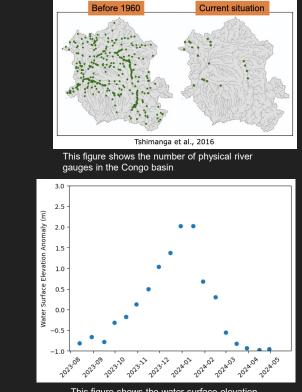
Dani Esteban-Fernandez

SWOT Water Surface Elevations Provide Many Thousand Virtual Stream Gauges

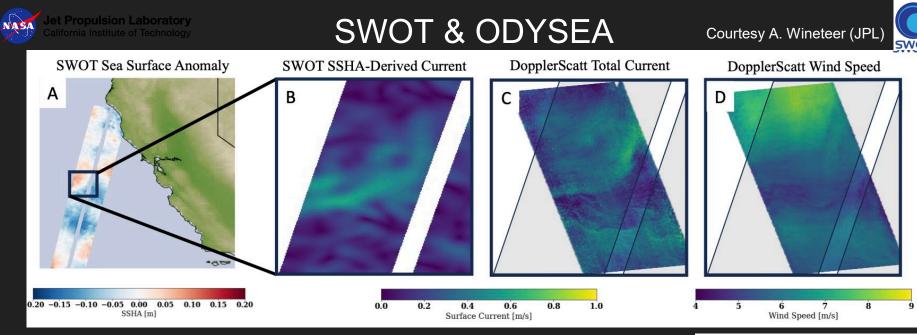
287

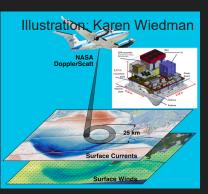
ation (m)

PV PV


Ť

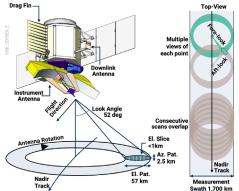
Nater


- 285 J


284

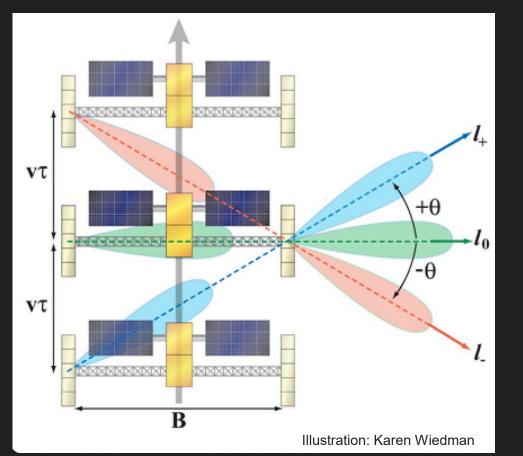
2023-08-13 10 km

This figure shows the water surface elevation dynamics for just one SWOT channels over the period of nearly one year. The SWOT data captures clearly the annual variations in river stage due to the rainy season.



Measurements of total surface current velocities offer a unique complement to SSH measured by SWOT.

Data collected by DopplerScatt during S-MODE shows the potential of combining geostrophic and total currents.


The ODYSEA mission, approved for phase A, may well fly (2031-2033) while SWOT is still operating and provide coincident/surface current-dataogy 2024

The future: SWOT-LOAC?

SWOT Land-Ocean Aquatic Continuum concept has been developed by a US/French science team for possible future US/French collaboration.

New ideas:

Marry SWOT topography with broader swath and Doppler velocity estimation like DopplerScatt/ODYSEA but at wave resolving scales.

Global mission with a coastal emphasis.

More details of science goals to be provided on Friday.