

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

CSA ASC

Surface Water and Ocean Topography (SWOT) Mission

Validation Meeting

June 18-19, 2024

KaRIn CA Crossover MASS/Lidar Validation

Luc Lenain⁽¹⁾ and Curtis Chen⁽²⁾

on behalf of JPL/CNES Algorithm and Cal/Val Team ⁽¹⁾Scripps Institution of Oceanography ⁽²⁾Jet Propulsion Laboratory, California Institute of Technology

Outline

- MASS capabilities and technical description
- Post-launch campaign
 - Operational challenges
 - Environmental conditions
 - Flight patterns
 - Example of MASS-SWOT collocated observations
- Spectral analysis and SWOT performance validation

- The MASS is a **mature and proven** portable package of high-resolution instrumentation built specifically for airborne remote sensing applications.
 - Over 800 hours of accumulated flight time over the course of more than 28 different field campaigns.
 - Successfully operated from a broad range of aircraft (Cessna 206, Partenavia P-68, Gulfstream-V and DHC-6 Twin Otter) as well as from a Bell 206 helicopter.
 - Major component of S-MODE Earth Venture Suborbital III mission.
- MASS collects airborne measurements of:
 - Sea surface displacement
 - Temperature
 - Surface kinematics
- MASS data are used to provide measurements of:
 - Ocean waves
 - Currents
 - Stokes drift
 - Sea surface height (SSH)
 - Ocean transport and dispersion
 - Biological activity
 - Hydrological and terrestrial applications include measurements of snow cover, coastal geomorphology, and the built environment

SIO Modular Aerial Sensing System (MASS)

Example of surface elevation as measured from the MASS during a 2011 experiment in the Gulf of Mexico, flying above NDBC buoy #42040. (wind~12m/s, Hs = 3.1m, aircraft altitude = 500m AMSL)

Instrumentation		Measurement
Scanning Waveform Lidar (x2)	Riegl Q680i	Surface wave, surface slope, directional wave spectra (vert. accuracy ~2-3cm)
Long-wave IR Camera	FLIR SC6700	Ocean surface processes, wave kinematics and breaking, frontal processes
High-Resolution Video	JaiPulnix AB-800CL	Ocean surface processes, wave kinematics and breaking, frontal processes
Hyperspectral Camera	Specim Kestrel	Ocean surface and biogeochemical processes
Redundant GNSS/IMU	Novatel SPAN-LN200	Georeferencing, trajectory

© 2024 California Institute of Technology. Government sponsorship acknowledged.

Flight operations

NASA JSC GV flight request:

- Phase I: Start Date 03/01/2023 End Date 03/30/2023 30 days.
- Phase II: Start Date 05/01/2023 End Date 05/21/2023 20 days.

Actual availability caused by limited JSC staff availability & Astronaut Return commitment

- Phase I: Start Date 03/28/2023 End Date 04/14/2023 17 days (including multiple down days).
- Phase II: Start Date 06/05/2023 End Date 06/09/2023 5 days.

In the end, we only were able to obtain a fraction of the flight days initially requested which impacted our sampling strategies, limiting data collections to 9 flight days for phase I, and 5 flight days for phase II.

Phase I environmental conditions were ok most days, though a persistent cloud layer during all flights constrained flight operations to below the cloud base (~1000-1500ft) with contamination from few lower level clouds/ cloud bank /fog layers in part of the flight track.

Phase II environmental conditions were poor (clouds & low winds)

A total of 36,000km flown with the NASA GV as part of the post-launch CalVal.

SWOT

© 2024 California Institute of Technology. Government sponsorship acknowledged.

Phase I – Environmental conditions

SWO

Leveraging NASA S-MODE IOP2 assets: In-situ observations from fleet of instrumented Wave Gliders

Phase I – Flight tracks

2023/03/31

38°N 30°N 30°N 30°N 30°N 230°E 232°E 234°E 236°E 236°E 238°E

Phase I – Flight tracks

Phase II – Flight tracks

Example of SST, SSH and Hs observations April 3rd 2023

Example SSHA Comparison

MASS and KaRIn agree very well in spatial domain

- Small bias between MASS and KaRIn is not unexpected due to residual crossover error (does not affect alongtrack spectrum; plot is detrended)
- Variation between MASS
 legs has similar magnitude
 as difference between KaRIn
 and MASS leg average
- Averaging:
 - MASS: Full lidar swath and 2.5 km in along track
 - KaRIn: Three 2 km pixels in cross track centered on MASS swath

SWOT

•

Spectral Analysis Overview

- Compare KaRIn SSHA to MASS SSHA to validate L2 spectral performance:
 - 2023-04-05, FC05
 - 2023-04-06, FC06
 - 2023-04-03, FC03
 - 2023-04-04, FC04
- FC05 and FC06 each have six 150 km along-track segments staggered every 10 km in cross track from 10 to 60 km; each segment is flown twice
 - FC05/06 have more segments over which spectral error estimate can be averaged
 - 1-2 m SWH
- FC03 and FC04 each have 450 km along-track segment at KaRIn midswath; segment is flown four times
 - FC03/04 have more MASS legs that can be averaged to estimate truth
 - ~3 m SWH
 - Data have some gaps
- Subtract MASS spectral error estimate from KaRIn vs. MASS comparison to estimate KaRIn error

Flight Patterns Suitable for Along-Track Spectral Validation

© 2024 California Institute of Technology. Government sponsorship acknowledged.

Along-Track Spectral Analysis: FC05 Example

⁻ KaRIn

possible

- Mean(MASS legs)
- KaRIn minus Mean(MASS legs)
- Variance(MASS legs) [equivalent to difference if only two legs]

Step 3: Subtract estimate of MASS error PSD from PSD of KaRIn minus MASS to obtain estimate of KaRInonly error PSD

FC06 Average of Spectra Over Pairs

FC05/06 Average of Spectra Over Flights

FC05 and FC06 MASS SWH

FC05₈(Left) 20230405 PGC0 IGS14Final 250m xover FC06 (Right) 20230406 PGC0 IGS14Final 250m xover 2se 7 1.6 1.0 m median SWH 6 SWH (m) MASS SWH (m) 1.4 for FC06 5 1.9 m median SWH 1.2 MASS MASS for FC05 1 3 0.8 2 1∟ 15 0.6 16 22 16 19 17 18 19 20 21 17 18 20 21 22 15 Time (hrs rel UTC midnight) Time (hrs rel UTC midnight)

Note: 2023-04-05 and 2023-04-06 are the only days with along-track MASS flight patterns suitable for along-track spectral validation and SWH of 2 m or less

Gaps in FC03 and FC04

- MASS lidar data from 2023-04-03 and 2023-04-04 have ~20 sec gaps due to operator error that split ~450 km track into three segments of ~150 km each per leg
 - Due to procedural error in data collection when starting new files
 - Not present in later flights

٠

٠

- ~20 sec corresponds to ~2 km along-track distance
- Gaps are not exactly spaced evenly or in same place per segment
- Gaps are filled by smoothing and interpolation, but may still cause artifacts
- When estimating PSD, split ~450 km track into three ~150 km segments and use Welch's method for each ~150 km segment individually
 - Gaps may not be exactly at ends of ~150 km segments but will be weighted down significantly by Hann window used for spectral estimation

© 2024 California Institute of Technology. Government sponsorship acknowledged.

FC03 Spectra

FC04 Spectra

FC03/04 Average of Spectra Over Flights

FC03 and FC04 MASS SWH

Note: Strictly, L2 requirement is applicable to SWH of 2 m or less

FC03/04/05/06 Average Over Flights

Conclusions

- MASS data suggest that KaRIn is meeting ocean along-track spectral requirements at 15-50 km wavenumbers
- MASS flights provide rich data set for KaRIn validation beyond along-track spectra (e.g., KaRIn phase screen and SWH validation)

Backup

FC03/04 Latitude vs. Time

- Each 450 km MASS leg takes ~1 hr
- About 5-10 min between legs (slow in order to minimize aircraft bank angle and avoid loss of GNSS tracking)
- Aircraft flight was planned to be approximately centered on KaRIn overpass time

FC03/04/05/06 Average w/Longer FFT

