

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Surface Water and Ocean Topography (SWOT) Mission

Validation Meeting

June 18-19, 2024

KaRIn LR Data Over/Near Land

Albert Chen⁽¹⁾

on behalf of JPL/CNES Algorithm and Cal/Val Team ⁽¹⁾Jet Propulsion Laboratory, California Institute of Technology

LR Processing Surface Types

- LR algorithms are optimized for open ocean [Blue region on the map.]
- Outside open ocean:

SWOT

- SSHA is analogous to WSE (SSHA = SSH – geoid – solid_earth_tide – load_tide – pole_tide)
- Sea state bias is zero.
- L1B reference surface is set to OBP reference surface
- For phase bias correction, "land" and "continental ice" are modeled with sigma0 = 0 dB.
- Users are advised to use HR data whenever possible for regions outside open ocean.
- LR validation focuses primarily on "open ocean".

Surface Type Map for LR processors

Fill Values in Reference Surface

• Many of the fill values in the reference surface occur near coasts, and at estuaries.

SWOT

- This causes fill values in SSHA in Version B and Version C.
- This has been fixed in the Developmental Version and will not affect future releases.

Red indicates fill values in open ocean.

L1B_LR_INTF processing over land

- PICO products have a known issue that causes artifacts near land/water boundaries.
- Fix will be delivered to operational processing later this year.

SWOT

Lake Managua

(Xolotlan)

LR data near coasts

- L1B phase bias correction is only computed once every 2.5 km, and then interpolated to 250m.
 - It may not capture the ocean/land boundary exactly.

SW07

- At coastlines, interpolator kernels (for phase bias correction, beam combining, and native-to-fixed grid resampling) will be partially over land and partially over water, potentially resulting in sub-optimal performance.
 - Users advised to check *distance_to_coast* variable.

Version C

L1B phase bias correction modulo 0.5 rad, beam 5

Development Version

L1B phase bias correction modulo 0.5 rad, beam 5

© 2024 California Institute of Technology. Government sponsorship acknowledged.

On-board Processor Reference Surface

• OBP reference surface is a smooth spline in along-track and constant in cross-track for each swath. Due to this limitation, it cannot be close to every lake's true elevation.

Users should check whether the obp_ref_surface is close to the true lake elevation.
Expect large errors in SSHA when OBP reference surface is too far away from true elevation.

SWOT

obp_ref_surface is close to ocean elevation, but tens of meters away from Lake Managua elevation.

PICO cycle 013 pass 425 L1B Interferogram, beam 5

Left swath - Right swath nadir

© 2024 California Institute of Technology. Government sponsorship acknowledged.

OBP Reference Surface

PICO cycle 013 pass 425, L2_SSH Basic ssha_karin_2

OBP Reference Surface

- When there are multiple passes over a particular lake, the OBP reference surface may be close to the true lake height for one pass, but not another.
 - This applies to ascending vs. descending passes, adjacent passes, science vs. cal orbit passes.
 - This is due to OBP hardware/firmware constraints and the OBP table optimization algorithm.
- Plots show example from Lake Geneva.

SW07

• See SWOT User Handbook Section 10.12

LR data over Ice Sheets

SNR is generally good over ice sheets.

- In PICO, large height errors (tens of meters) because LR processors do not do phase unwrapping.
 - Potential improvements in the future using phase unwrapping or improved reference DEM. (Not yet planned.)
- Similar behavior over large deserts and other relatively flat land areas.

Other Phenomenology

Numerical overflow during Inverse Fast Fourier ۲ Transform (IFFT) happens much more often over land and sea ice than in open ocean.

SWO

- Often caused by specular ringing (see HR presentations).
- Much of the phenomenology observed in HR data ۲ are also observed in LR data over land, such as layover, dark water, etc.

PICO cycle 013 pass 425 L1B Interferogram, beam 5

IFFT overflow occurred during on-board processing.

(degraded_karin_ifft_overflow bit set in *ssh_karin_2_qual*).

Gulf of Mexico

Summary

• ADT advice to users:

- Outside of open ocean, use HR products whenever possible
- LR products potentially not as accurate <10 km away from coast
- LR lakes must be examined on a case-by-case basis
 - When obp_reference_surface is too far away from true lake surface height, LR ssha will be highly erroneous.
 - This typically happens for small lakes. Large inland water bodies that are not in HR mask are not usually affected.
 - Or check whether L1B interferogram has > 1 fringe.
 - Or check for jumps in lake elevation (due to phase wrapping).
- Missing data in Version C has been addressed, and these regions will have valid data in the next version.

Backup