

National Aeronautics and Space Administration

let Propulsion Laboratory California Institute of Technology Pasadena, California

Surface Water and Ocean Topography (SWOT) Mission

Validation Meeting

June 18-19, 2024

Hydrology Algorithm Overview and Status

Curtis Chen⁽¹⁾

on behalf of JPL/CNES Algorithm and Cal/Val Team ⁽¹⁾Jet Propulsion Laboratory, California Institute of Technology

Outline

- HR products and algorithm flow
- High-level status

HR Algorithm Flow

Data Product Illustration

Data Product Illustration

HR Algorithm Status

Single-look complex (SLC) processing is mature

SWO

- Pixel cloud (PIXC) algorithms are mostly stable but will be updated based on continuing validation work
 - PIXC processing is complicated and affects river, lake, raster, and FPDEM processing (which are complicated, too)
 - Validation and tuning must address coupling of end-to-end processing flow
- River and lake algorithms are working reasonably well but may still benefit significantly from additional development work
 - Algorithms were developed before launch based on limited simulations that could not capture complexities of real data and unknown phenomenology
 - Real rivers and lakes are varied and phenomenology adds more dimensions, so characterization and tuning must examine large data sets with sufficient external data (difficult!)
- Raster processing is relatively mature, but not without its own challenges
- Floodplain DEM (FPDEM) algorithms are being evaluated, but FPDEM production is not planned for near term

HR Algorithm Development Approach

- L2 HR algorithms are still evolving (much more so than LR)
 - HR ground processing is much more complicated than LR processing
 - Inland surfaces have greater phenomenological variability than ocean
- Validation for HR is iterative:
 - Process:

- Compare SWOT data to field data and assess differences
- Adjust HR algorithms in order to improve SWOT performance
- Repeat
- Team is mindful not to over tune algorithms based on available field data
 - Algorithm changes should not be completely empirical; design algorithm enhancements with physical basis that should apply generally/globally
 - Assess algorithm updates on field data that did not influence algorithm changes
- Upcoming presentations on HR validation include results from both public Version C data products and offline-processed products using developmental software and parameters
 - Covers both what to expect from data available now and what to expect from future versions of data
 - Source of data will be identified in context

Backup

Top-Levewl Algorithm Flow

SWOT

Radiometer, POE/MOE, KaRIn Calibration Flow

LR Algorithm Flow

