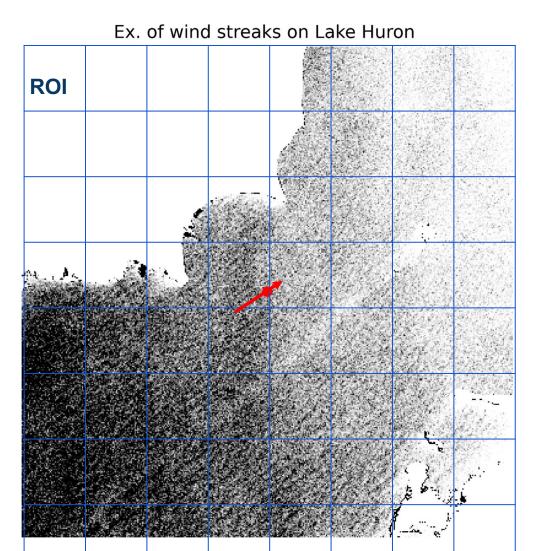
### Estimating wind direction with SWOT backscatter

### K. McQuillan<sup>1</sup>, G. Allen<sup>1</sup>, J. Fayne<sup>2</sup>, H. Gao<sup>3</sup>, J. Wang<sup>4</sup>

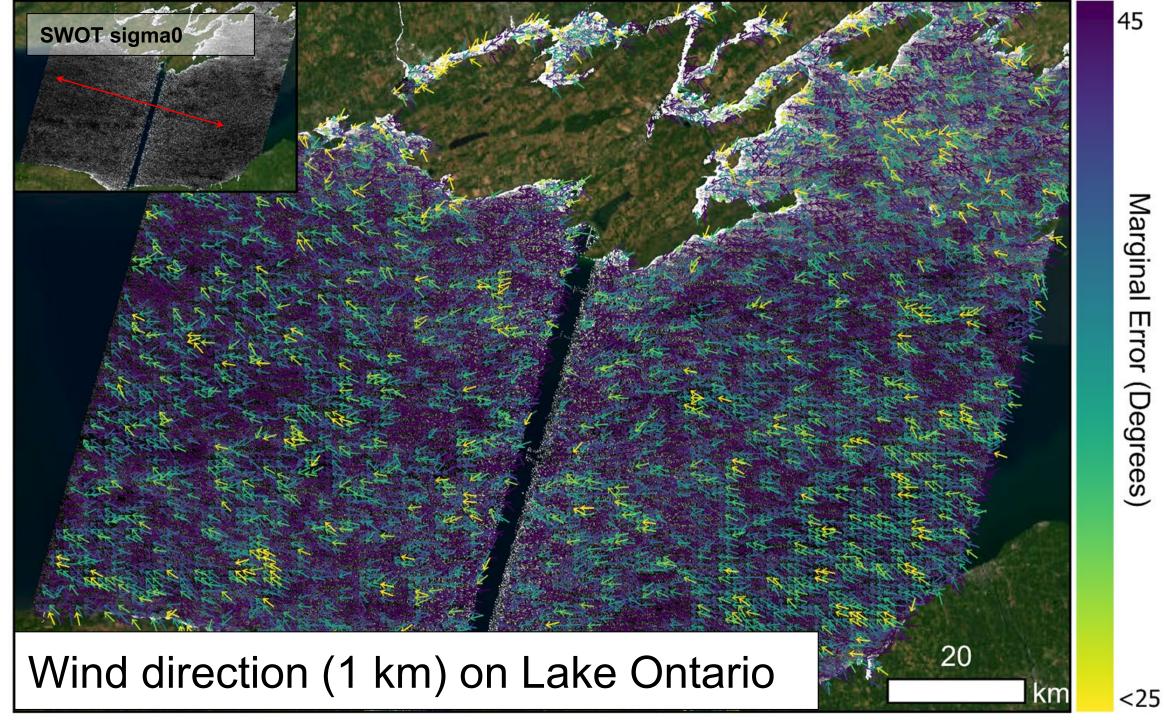
<sup>1</sup> Virginia Tech, Blacksburg, Virginia; <sup>2</sup> University of Michigan, Ann Arbor, Michigan;
<sup>3</sup> Texas A&M University, College Station, Texas, <sup>4</sup> University of Illinois, Urbana, Illinois

1

### Wind over lakes

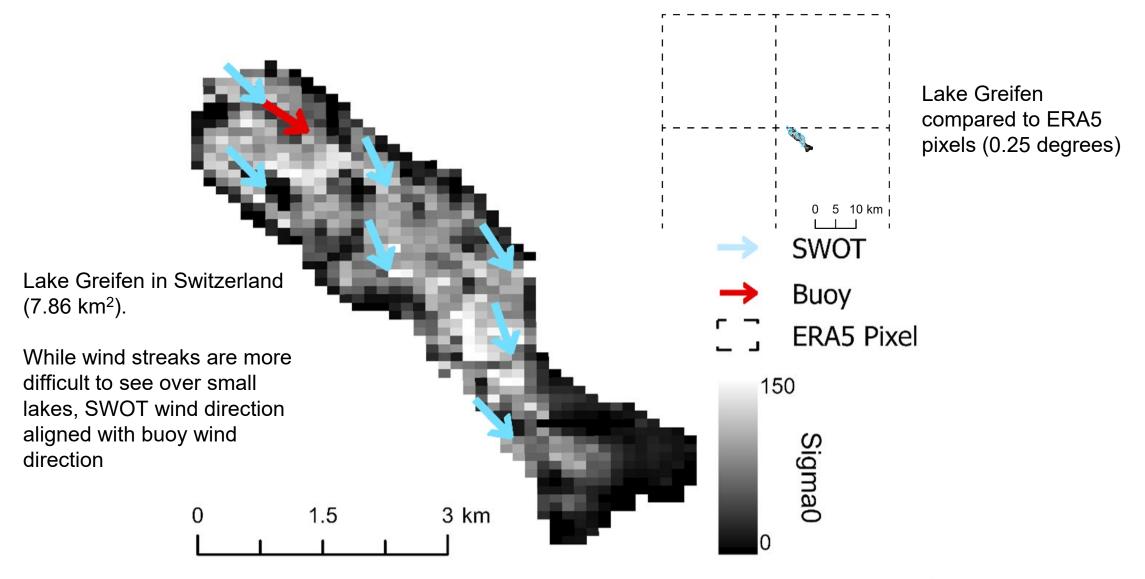

- Wind is an important driver of lake evaporation <sup>1</sup>.
- While wind can be extracted from reanalysis datasets, the resolution is often coarser than lake size.
- SWOT KaRIn backscatter (sigma0) observes wind-driven surface water roughness, and could be used to develop a wind speed model for lakes (ongoing work from Jessica Fayne's group)<sup>2</sup>.
- Wind direction is required to estimate wind speed from SAR <sup>3</sup>.




https://www.tahoedailytribune.com/news/wind-warmth-have-led-to-more-than-expected-evaporation-at-lake-tahoe/

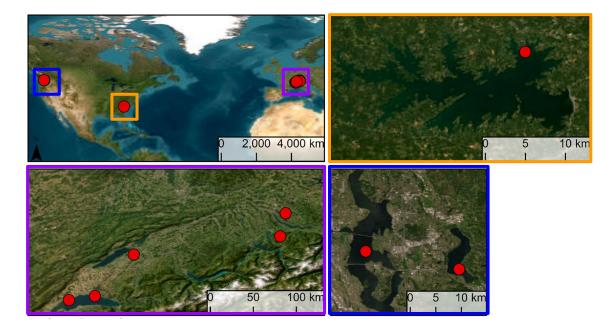
## Use wind streaks to estimate wind direction from SWOT

- Estimate wind direction and marginal error (ME) from wind streaks using the Modified Local Gradient method <sup>3</sup> at 1 km resolution.
  - Subset the lake into ROIs of desired size (1 km)
  - Calculate local gradients within each ROI and use to estimate wind direction and ME
  - ME is a function of the local directions alignment within the ROI.
  - Smaller ME = more reliable wind direction estimate
- Test method using sigma0 from SWOT Level 2 Water Raster Image Data Product 2.0 (100m)




Example of wind streaks oriented NE-SW visible in Sentinel-1 radar backscatter over Lake Huron. The red arrow represents buoy wind direction at 56 degrees, aligning with the wind streaks.




Marginal Error (Degrees)

# SWOT estimated wind direction at much higher resolution than global reanalysis dataset, ERA5



### Wind direction validation using over-water buoys

Buoy locations in US and Switzerland (N=8, 7-58 km<sup>2</sup>)



Compare performance stats of SWOT with ERA5 (180 degree ambiguity)

| Image Subset   | Number<br>of images | LG-Mod MAE<br>(degrees) | ERA5 MAE<br>(degrees) |
|----------------|---------------------|-------------------------|-----------------------|
| SWOT           | 70                  | 37.72                   | 39.58                 |
| SWOT (ME < 40) | 32                  | 36.48                   | 40.99                 |
| SWOT (ME < 30) | 24                  | 34.78                   | 40.32                 |
| SWOT (ME < 20) | 10                  | 28.13                   | 50.38                 |

- Wind direction estimated using SWOT had lower error compared to ERA5
- SWOT wind direction error improved after discarding estimates with high marginal error

### Preliminary takeaways

- Wind direction from SWOT was more accurate and higher resolution compared to frequently used global ERA5 dataset.
- Expand analysis to include additional buoys for more robust validation.

Contact info: kmcquil@vt.edu

#### Citations

- Zhao, B., Huntington, J., Pearson, C., Zhao, G., Ott, T., Zhu, J., Weinberg, A., Holman, K. D., Zhang, S., Anderson, R., Strickler, M., Cotter, J., Fernando, N., Nowak, K., & Gao, H. (2024). Developing a General Daily Lake Evaporation Model and Demonstrating Its Application in the State of Texas. *Water Resources Research*, 60(3), e2023WR036181. https://doi.org/10.1029/2023WR036181
- Fayne, J. V., & Smith, L. C. (2023). How Does Wind Influence Near-Nadir and Low-Incidence Ka-Band Radar Backscatter and Coherence from Small Inland Water Bodies? Remote Sensing, 15(13), Article 13. https://doi.org/10.3390/rs15133361
- Rana, F. M., Adamo, M., Pasquariello, G., De Carolis, G., & Morelli, S. (2015). LG-Mod: A Modified Local Gradient (LG) Method to Retrieve SAR Sea Surface Wind Directions in Marine Coastal Areas. Journal of Sensors, 2016, e9565208. <u>https://doi.org/10.1155/2016/9565208</u>