

Overview of Level-4 gridded products and operational outlook

Satellite Altimetry Data

AVIS

M. Ballarotta & J. Wang with contribution from: C. Ubelmann, V. Bellemin-Laponnaz, F. Le Guillou, G. Meda, C. Anadon, A. Laloue, A. Delepoulle, Y. Faugere, M.I. Pujol, R. Fablet, G. Dibarboure, S. Metref, E. Carli, R. Morrow

Sea Level Anomaly (All sat)

Content

- Introduction & context
- First mapping experiment at global/regional scale with SWOT data
- Conclusions
- Future activities

Before April 2023, only simulations through **Observing System Simulation Experiments** (OSSE) have been conducted to study the **contribution of wide-swath systems** (like SWOT) to mapping systems

Now, **REAL SWOT** product are available making it possible to design **Observing System Experiments** (OSE) to study the **contribution of wide-swath systems** to mapping systems

- => assess the impact of these new wide-swath data in the current global/regional mapping system through the use of Observing System Experiments (OSE)
- => in various context/application: DT/REP, NRT, Forecasting
- => investigate which mapping method is able to resolve finer oceanic scale

First mapping experiments at global/regional scale

Input data:

Product type	Nadirs Sea-level anomaly Level 3	SWOT Sea-level anomaly Level 3
	products	products
Product ref.	SEALEVEL_GLO_PHY_L3_NRT_008_044	SWOT_L3_SSH
Spatial coverage	[0°E:360°E][90°S:90°N]	[0°E:360°E] [90°S:90°N]
Temporal coverage	From 2023-07-01 to 2023-12-01	From 2023-07-27 to 2023-11-30

2 Experiments were carried out: 1) using nadir only, 2) using nadir and SWOT

Three mapping methods are tested:

MIOST (Ubelmann et al., 2021): a method accounting for various modes of variability of the ocean surface topography (e.g., geostrophic, barotrope, equatorial waves dynamic ...) by constructing several independent components within an assumed covariance model.

4DvarNET (Fablet et al., 2021): a data-driven approach combining a data assimilation scheme associated with a deep learning framework. This neural network framework involves the joint training of the representation of the ocean dynamic, as well as of the solver of the data assimilation problem.

4DvarQG (Le Guillou et al., 2021) : a 4-Dimensional variational (4DVAR) scheme with a Quasi-Geostrophic (QG) model

Experimental Products

Temporal coverage:
 2023/03/28-2023/07/11 (calval)
 2023/07/10-2023/11/30 (science)

Spatial coverage:
MIOST gridded product: GLOBAL
4DvarNET: basin ([25°N:50°N] [80°W: 10°W])
4DvarQG: basin ([25°N:50°N] [80°W: 10°W])

Wide swath altimetry enables better positioning of oceanic structures (eddies, fronts, etc...)

Validation metrics:

One altimeter (SARAL/Altika) is excluded from the mapping to assess the mapping error. We focus here on the effective resolution metric, which is given by the wavelength λ_s where the Signal to Noise Ratio SNR(λ_s) is 2, i.e., the wavelength where the SSH_{error} is two times lower than the signal SSH_{alongtrack}

Fig.: Example of spectral analysis: A) inputs SSH gridded and along-track fields, B) colocation gridded SSH and along-track SSH; and C) Signal-to-Noise ratio

Error variance reduction in energetic currents (Gulfstream, ACC, Kuroshio...) when integrating SWOT into a **6** nadirs altimeter constellation (~15% error reduction in high variability, **10% error reduction** in low variability region)

Gain in effective resolution when integrating SWOT into a **6** nadirs altimeter constellation: overall good benefit of SWOT (**finer resolution ~5-10km, 20km locally**) except in regions characterized by specific atmospheric and oceanic conditions, such as tropical rainfall, wet troposphere, as well as areas affected by storm tracks or internal

Dynamical & Data-driven mapping approaches enable <u>finer resolution</u>

Regional studies/applications: E. Carli et al.

Reconstruction of 3D balanced motions from 2D surface fields projection at depth

- Mesoscale and large submesoscale structures (>20 km)
- Coherent structures along the water column

ASSUMPTIONS

- Exponential decay of the reconstructed fields
- Constant vertical stratification
- Conservation of potential vorticity in the domain
- Horizontal boundaries: double periodic domain
- Vertical boundaries: semi-infinite domain

Klein and Lapeyre (2006) Klein et al. (2009) Lapeyre (2017)

Vertical velocity w [m/d] @250m with surface strain rate contours is sensitive to the 2D surface fields used to project the solution

AI-based ultra-resolution satellite data assimilation – working progress

Edwin Goh, Alice Yepremyan, Jinbo Wang, Brian Wilson Jet Propulsion Laboratory

- Based on
 2023_SSH_mapping_train_eNATL60_test_NATL6
 0
- Convolutional Autoencoder (CAE)
- Data: NATL60 high-res ocean simulation (1/20° grid spacing). Consists of SWOT + 4 Nadir.
 - Training: Jan 2, 2013 → Sep 30, 2013
 - Train for 400 epochs
 - Testing: Oct 22, 2012 → Dec 2, 2012

Data availability

The **SWOT_L3_SSH** product, derived from the L2 SWOT KaRIn low-rate ocean data products (NASA/JPL and CNES), is produced and made freely available by AVISO and DUACS teams as part of the DESMOS Science Team project. AVISO/DUACS, 2023. <u>https://doi.org/10.24400/527896/A01-2023.018</u>. The **Near-Real-Time (NRT) Level-3** altimeter satellite **along-track data** are distributed by the EU Copernicus Marine Service (product reference SEALEVEL_GLO_PHY_L3_NRT_008_044, Pujol et al., 2023).

The experimental gridded products (MIOST, 4DvarNET & 4DvarQG) computed with nadirs and wide swath (v0.3) altimetry are also made available on the AVISO+ portal. <u>https://www.aviso.altimetry.fr/en/data/products/sea-surfaceheight-products/global/experimental-multimission-gridded-l4-sea-level-heightsand-velocities-with-swot.html</u>

A collaborative data-challenge focusing on the integration of SWOT data into mapping systems is currently under construction: https://github.com/ocean-data-challenges/2024_DC_SSH_mapping_SWOT_OSE

Conclusions

- SWOT data are available since April 2023 and can now be integrated into mapping systems
- Various mapping algo to test: data-driven, dynamical mapping, classical statistical linear mapping (OI)
- First results on the impact of Karin the current L4 product : mapping error reduced by 10-15%, finer resolution (up to 20km locally)
- Data-driven & dynamic resolved finer scale than OI
- Products available on AVISO+
- Don't hesitate to give us feedbacks on these experimental products

(=> aviso-swot@altimetry.fr)

Future work & Operational outlook

•Further validations, understand what happen in the equatorial & north pacific regions

•Increase collaboration (e.g., regional data-challenge over Californian/Mediterannean Xover)

•Release of L4 product based on the v1.0 L3 Karin SSH product

 \Rightarrow period from 2023-07-27 to 2024-05-01

•MIOST Mapping Algorithm Solution:

- Planned as the reference mapping algorithm for upcoming CMEMS Level-4 (L4) altimeter product reprocessing DT24.
- Will also be used for near-real-time (NRT) L4 products.
- MIOST L4 product, incorporating Karin data, planned to be distributed through CMEMS from mid-2025.

•4DvarNET Solution:

- Shows good performance for regional products.
- Requires further refinement for global application before CMEMS integration.

•4DvarQG Solution:

- Good for regional scale applications.
- Development efforts in progress to extend to a global scale.

•Exploration of Other Mapping Techniques:

- Deep learning approach by Martin et al. (2024) has shown high efficiency in resolving small oceanic features.
- A global map solution has been successfully processed using SSH only and combined SSH+SST data.
- Others ?

Unfollow

🞧 Overview 📮 Repositories 16 🗄 Projects 🔗 Packages 🙉 Teams 1 🔗 People 11 🕸 Settings

MORE INFO: https://github.com/ocean-data-challenge

MORE INFO:

Working group on the topic of "open science, data, and algorithm." See Github page

THANK YOU

Conclusions

CONSTELLATION

7 nadirs

1 SWOT

٠

or

AVERAGED MAP

RESOLUTION

MIOST