Observations of Mesoscale SSH in the Great Lakes
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Abstract e o™ e v Lake Ontario during the 21-day Science orbit
SWOT (L3) observations of Lake Ontario are analyzed from Nov " LAASTTR & T W

2023 to Jun 2024 (cycles 7-16). During each 21-day cycle, the lake
Is sampled by two clusters of 4 tightly-spaced passes, effectively
providing full-lake sea surface height (SSH) every 10 days. Lake

>0 Left: Lake Ontario is 310 km x 85 km with an average depth of 86 m. Eight SWOT passes
~100 cross the lake each cycle in two tightly-spaced clusters, providing two full-lake snapshots
-150 every 21 days. So far, the lake has been weakly stratified during the science orbit (Nov -
-200 Jun), corresponding to an internal Rossby radius < 1 km.

Ontario has a 4.9 cycle/day east-west seiche that often reaches 10 N S e NI, -
cm. The seiche is removed using 8 in situ lake-level gauges. The _ Below: The first cluster of passes (“a”) occurs in days 1-5 and the second cluster (“b”)
. . . . First pass cluster [days 1.7-4.3] . :
first two EOFs of the gauge network are consistent with the first G YW EEW W T T occurs in days 11-16. Atotal of 19 clusters are analyzed over cycles 7-16, with 15 clusters
two basin-scale seiche modes, so that EOF amplitudes may be returning good data over nearly the entire lake.
iInterpreted as seiche amplitudes and used as a high-frequency -
dynamic atmosphere correction (DAC). This correction removes
70% of the _varianc_e in the gauge netV\{ork. SWOT data are 20 Pass vs day of orbit
corrected by (i) applying the DAC, (ii) removing the mean lake level 43°N o & 5 B b
and along-track median for each pass, and (iii) applying a 9-point W AC oY ALY AV 2DV
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lake-wide map is then least-squares fit to 25 rotational basin BOW _79°W _ 78°W _ 77°W _ 76°W _ T5°W
modes, which explain a total of 10-50% of SSH variance. At times, s — /! Cycle vs date
the rotatllonal_ modes rev?al (i) a 10 cm/s basin wide C|rcu_lat|on_(|n 44°N o o o P AP AD AP A AP A P O O P
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processing artifacts, or small-scale (<20 km) geostrophic VOINT DV OIN AT AT AT SN 4 O
turbulence and coastal trapped waves. 525 W54 557 s
First seiche mode (4.9 cpd) m m n . (a) Water level spectra at Kingston (r* = 0.69)
o2 e Removing Seiches and Tides from SSH Jos
m | CO‘ | gx after DAC
E
2o Left: The first two theoretical seiche modes (including rotation, Rao and Schwab 1976) have o
o f frequencies of 4.9 and 8.7 cpd. Eight lake-level gauges provide hourly water level. Barotropic tides in L=
4348 o the Great Lakes are nearly equilibrium tides, and can be easily synthesized from seiche modes, with !
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442 F ! - . Right: The lake-level spectrum from Kingston, ON (top) has tidal peaks at 1 and 2 cpd and a seiche
sl co peak near 5 cpd. Treating the gauge-network EOF amplitudes as seiche amplitudes provides a 10
. high-frequency dynamic atmosphere correction (DAC) for the entire lake (Kelly et al. 2024). The DAC c Om
| 0 reduces the water level spectrum at Kingston by an order of magnitude. The timeseries of lake-level ”
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Observed Circulation Patterns

Below: Rotational modes explain 28-46% of SSH variance in the 4 snapshots shown here. On Dec 7 and Jan 17, the lake exhibits
a 10 cm/s gyre in the counter-clockwise and clockwise directions, respectively. On Feb 28 and Jun 1, the lake displays a 10 cm/s
double gyre consistent with downwind flow in shallow coastal regions and a return flow in the deep basin center.

SSH L3 data from 19 clusters of passes were processed as follows:

1. Data were corrected using the DAC above to remove tides and seiches
g glﬁﬁir;:: I\(Neelreevreelr?]r;(\j/ee; EZi?Igoggrr::)avci;rl:gmge-glc)ai?]tV\(lglrje) rrre1renc?i\a/1?1dfilter In all 4 snapsho.ts, the residual contains enhanced SSH variability at 5-20 km. This signal may be noise, processing artifacts,
4. Alake-wide 2 km x 2 km map was created using objective analysis with a 5-km small-scale eddies, or coastal trapped waves.
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