

Internal tides from SWOT and high-resolution modeling

Badarvada Yadidya¹, Brian K. Arbic¹, Mujeeb Abdulfatai², Maarten C. Buijsman², Jay F. Shriver³, Edward D. Zaron⁴, Takaya Uchida⁵ ¹University of Michigan, ²University of Southern Mississippi, ⁴Naval Research Laboratory, ⁴Oregon State University, ⁵Florida State University

HYCOM can improve the internal tide corrections in SWOT

SWOT CALVAL - M2 Amplitude

Can we extract higher harmonics of internal tides from SWOT one-day orbit?

Figure 1. Global map showing the the SWOT passes during the one-day orbit period of the mission.

Figure 2. Comparison of Variance Reduction between HRET and HRET + HYCOM averaged over different passes during SWOT one-day repeat orbit.

Figure 4. Amplitude and phase of M₂ and M₄ internal tides computed from least-square harmonic analysis over 90 days for 1 cycle per hour and 1 cycle per day at the Amazon Shelf

- M₂ can be extracted from SWOT one-day orbit but it is <u>aliased in the far-field</u> <u>areas</u> (as the internal tides becomes non-linear).
- From this analysis, we know that we **cannot** extract supertidal frequencies from SWOT one-day orbit.

Figure 5. Amplitude of steric sea surface height of primary and higher harmonic internal tides at the Amazon Shelf

Figure 3. Difference in variance reduction from SWOT SSH between HRET + HYCOM and HRET alone in the regions near (a) LUZON, (b) TAHITI and (c) AMAZON

- Global ocean forecast model (HYCOM) can accurately simulate both longterm (phase-locked) internal tides and their short-term modulations (nonphase-locked/incoherent internal tides).
- HYCOM ocean forecast simulations can map internal tide SSH fields and serve as a correction model for satellite altimetry, reducing internal tide SSH variance comparably to the empirical HRET8.1 model in regions with strong internal tides.
- Combining HYCOM's predictions of modulated tides with HRET8.1's phaselocked tides could yield significant gains of **15%-40%** in explained variance in regions with strong internal tide activity.

Testing this hypothesis on SWOT one-day-repeat data showed that HYCOM
+ HRET can remove ~18% more variance than HRET alone.

Figure 6. (A) Stem Plot of the mean amplitude of D1-D6 tidal constituents averaged over the quadrilateral at the Amazon (B)

• Beam patterns are better defined for M₄ and MS₄ higher harmonics

• The MS₄ tidal constituent is the most dominant and results from the wavewave interaction of M₂ and S₂.

Mujeeb Abdulfatai mujeeb.abdulfatai@usm.edu

Citation: Yadidya, B., Arbic, B. K., Shriver, J. F., Nelson, A. D., Zaron, E. D., Buijsman, M. C., & Thakur, R. (2024). Phase-accurate internal tides in a global ocean forecast model: Potential applications for nadir and wide-swath altimetry. *Geophysical Research Letters*, 51, e2023GL107232. https://doi.org/10.1029/2023GL107232

